8 research outputs found

    Natural growth rates in Antarctic krill (Euphausia superba): II. Predictive models based on food, temperature, body length, sex, and maturity stage

    Get PDF
    We used the instantaneous growth rate method to determine the effects of food, temperature, krill length, sex, and maturity stage on in situ summer growth of krill across the southwest Atlantic sector of the Southern Ocean. The main aims were to examine the separate effects of each variable and to generate a predictive model of growth based on satellite-derivable environmental data. Both growth increments in length on moulting (GIs) and daily growth rates (DGRs, mm d-1) ranged greatly among the 59 swarms, from 0.58–15% and 0.013–0.32 mm d-1. However, all swarms maintained positive mean growth, even those in the low chlorophyll a (Chl a) zone of the central Scotia Sea. Among a suite of indices of food quantity and quality, large-scale monthly Chl a values from SeaWiFS predicted krill growth the best. Across our study area, the great contrast between bloom and nonbloom regions was a major factor driving variation in growth rates, obscuring more subtle effects of food quality. GIs and DGRs decreased with increasing krill length and decreased above a temperature optimum of 0.5°C. This probably reflects the onset of thermal stress at the northern limit of krill’s range. Thus, growth rates were fastest in the ice edge blooms of the southern Scotia Sea and not at South Georgia as previously suggested. This reflects both the smaller size of the krill and the colder water in the south being optimum for growth. Males tended to have higher GIs than females but longer intermoult periods, leading to similar DGRs between sexes. DGRs of equivalent-size krill tended to decrease with maturity stage, suggesting the progressive allocation of energy toward reproduction rather than somatic growth. Our maximum DGRs are higher than most literature values, equating to a 5.7% increase in mass per day. This value fits within a realistic energy budget, suggesting a maximum carbon ration of ~20% d-1. Over the whole Scotia Sea/South Georgia area, the gross turnover of krill biomass was ~1% d-1

    Act now against new NHS competition regulations: an open letter to the BMA and the Academy of Medical Royal Colleges calls on them to make a joint public statement of opposition to the amended section 75 regulations.

    Get PDF

    Effects of prenatal stress on fetal neurodevelopment and responses to maternal neurosteroid treatment in guinea pigs

    No full text
    Background: Maternal psychosocial stress during pregnancy is associated with adverse neonatal outcomes. These outcomes result from changes in fetal brain development and lead to disrupted cognitive, behavioural and emotional development. The neurosteroid allopregnanolone has been shown to reduce neural excitability and aid in protecting the fetal brain from excitotoxic insults. The objectives of this study were to assess the effect of prenatal maternal stress on fetal brain development with and without maternal allopregnanolone treatment. Methods: Pregnant guinea pigs were subjected to stress induced by exposure to a strobe light at 50, 55, 60 and 65 days gestation. Salivary cortisol levels were measured before and after each exposure. Fetal brains were assessed for markers of brain development using immunohistochemistry and plasma allopregnanolone was measured by radioimmunoassay. Results: Female, but not male prenatal stress-exposed fetuses demonstrated higher brain-to-liver ratios (BLR). Male fetuses showed significantly reduced expression of myelin basic protein (MBP), glial fibrillary acidic protein (GFAP), and both males and females showed reduced expression of microtubule-associated protein 2 (MAP2). These markers were not affected by maternal allopregnanolone treatment. However, maternal allopregnanolone treatment resulted in an increase in fetal plasma allopregnanolone concentrations in control pregnancies but concentrations were not raised after prenatal stress exposure. Conclusions: These findings indicate that the effects of prenatal stress on fetal brain development are sexually dimorphic with more pronounced negative effects seen on male neurodevelopment. Allopregnanolone treatment was not effective in raising fetal plasma concentrations after prenatal stress suggesting a stress-induced dysregulation of neurosteroid pathways during gestation. Interestingly, this study directly implicates prenatal stress in the disruption of fetal neurosteroid levels, such that it may mediate some of the deleterious effects on fetal neurodevelopment by facilitating a deficit in normal endogenous neuroprotective mechanisms

    Mechanisms leading to increased risk of preterm birth in growth-restricted guinea pig pregnancies

    No full text
    Intrauterine growth restriction (IUGR) is a risk factor for preterm labor; however, the mechanisms of the relationship remain unknown. Prostaglandin (PG), key stimulants of labor, availability is regulated by the synthetic enzymes, prostaglandin endoperoxidases 1 and 2 (PTGS1 and 2), and the metabolizing enzyme, 15-hydroxyprostaglandin dehydrogenase (HPGD). We hypothesized that IUGR increases susceptibility to preterm labor due to the changing balance of synthetic and metabolizing enzymes and hence greater PG availability. We have tested this hypothesis using a surgically induced IUGR model in guinea pigs, which results in significantly shorter gestation. Myometrium, amnion, chorion, and placentas were collected from sham operated or IUGR pregnancies, and PTGS1 and HPGD protein expression were quantified throughout late gestation (>62 days) and labor. The PTGS1 expression was significantly upregulated in the myometrium of IUGR animals, and chorionic HPGD expression was markedly decreased (P < .01 and P < .001, respectively). These findings suggest a shift in the balance of PG production over metabolism in IUGR pregnancies leads to a greater susceptibility to preterm birth

    Natural growth rates in Antarctic krill (Euphausia superba): I. Improving methodology and predicting intermoult period

    No full text
    We used the instantaneous growth rate method to determine the effects of food, temperature, krill length, sex, and maturity stage on in situ summer growth of krill across the southwest Atlantic sector of the Southern Ocean. The main aims were to examine the separate effects of each variable and to generate a predictive model of growth based on satellite-derivable environmental data. Both growth increments in length on moulting (GIs) and daily growth rates (DGRs, mm d�1) ranged greatly among the 59 swarms, from 0.58–15 % and 0.013–0.32 mm d�1. However, all swarms maintained positive mean growth, even those in the low chlorophyll a (Chl a) zone of the central Scotia Sea. Among a suite of indices of food quantity and quality, large-scale monthly Chl a values from SeaWiFS predicted krill growth the best. Across our study area, the great contrast between bloom and nonbloom regions was a major factor driving variation in growth rates, obscuring more subtle effects of food quality. GIs and DGRs decreased with increasing krill length and decreased above a temperature optimum of 0.5�C. This probably reflects the onset of thermal stress at the northern limit of krill’s range. Thus, growth rates were fastest in the ice edge blooms of the southern Scotia Sea and not at South Georgia as previously suggested. This reflects both the smaller size of the krill and the colder water in the south being optimum for growth. Males tended to have higher GIs than females but longer intermoult periods, leading to similar DGRs between sexes. DGRs of equivalent-siz

    Natural growth rates in Antarctic krill (Euphausia superba)— II. Predictive models based on food, temperature, body length, sex and maturity

    Get PDF
    The growth rates of postlarval krill (Euphausia superba) were measured across a wide range of environments in the Scotia Sea and around South Georgia using the Instantaneous Growth Rate (IGR) method. Each IGR experiment determined the intermolt period (IMP) and growth increment at molt (GI) of an average of 120 individuals incubated for 5 d in through-flowing ambient, filtered seawater. We examined the results from 51 IGR experiments involving 5,927 animals ranging between 25 mm and 62 mm. Animals were collected from an area that covered a latitudinal range of 10 � and surface temperatures of between �0.85�C and 4.75�C. The measurement of IMP has rarely been achieved in IGR experiments because synchronous molting biases estimates. We overcame this by applying a binary logistic regression model to our data. This related IMP to temperature, body length, and maturity stage. Food did not influence IMP. Our model estimated that krill within our experiments had IMPs ranging from 9 d to 57 d. Temperature affected the IMP of females more than that of males. The IMPs of females were shortest around 2�C and increased at lower and higher temperatures. IMP increased with body size and altered according to gender, with male IMPs being 50 % longer than those of equivalently sized females. One of the main assumptions of the IGR method is that the GI measured in the first few days reflects the in situ conditions experienced by krill in the previous intermolt period. However, we found that the GIs declined immediately and rapidly after capture, particularl
    corecore