17,115 research outputs found

    Occupation numbers in Self Consistent RPA

    Get PDF
    A method is proposed which allows to calculate within the SCRPA theory the occupation numbers via the single particle Green function. This scheme complies with the Hugenholtz van Hove theorem. In an application to the Lipkin model it is found that this prescription gives consistently better results than two other commonly used approximations: lowest order boson expansion and the number operator method.Comment: 25 pages, 10 figures, submitted to Nucl. Phys.

    Superconductivity from Undressing

    Full text link
    Photoemission experiments in high TcT_c cuprates indicate that quasiparticles are heavily 'dressed' in the normal state, particularly in the low doping regime. Furthermore these experiments show that a gradual undressing occurs both in the normal state as the system is doped and the carrier concentration increases, as well as at fixed carrier concentration as the temperature is lowered and the system becomes superconducting. A similar picture can be inferred from optical experiments. It is argued that these experiments can be simply understood with the single assumption that the quasiparticle dressing is a function of the local carrier concentration. Microscopic Hamiltonians describing this physics are discussed. The undressing process manifests itself in both the one-particle and two-particle Green's functions, hence leads to observable consequences in photoemission and optical experiments respectively. An essential consequence of this phenomenology is that the microscopic Hamiltonians describing it break electron-hole symmetry: these Hamiltonians predict that superconductivity will only occur for carriers with hole-like character, as proposed in the theory of hole superconductivity

    Superconductivity from Undressing. II. Single Particle Green's Function and Photoemission in Cuprates

    Full text link
    Experimental evidence indicates that the superconducting transition in high TcT_c cuprates is an 'undressing' transition. Microscopic mechanisms giving rise to this physics were discussed in the first paper of this series. Here we discuss the calculation of the single particle Green's function and spectral function for Hamiltonians describing undressing transitions in the normal and superconducting states. A single parameter, Υ\Upsilon, describes the strength of the undressing process and drives the transition to superconductivity. In the normal state, the spectral function evolves from predominantly incoherent to partly coherent as the hole concentration increases. In the superconducting state, the 'normal' Green's function acquires a contribution from the anomalous Green's function when Υ \Upsilon is non-zero; the resulting contribution to the spectral function is positivepositive for hole extraction and negativenegative for hole injection. It is proposed that these results explain the observation of sharp quasiparticle states in the superconducting state of cuprates along the (π,0)(\pi,0) direction and their absence along the (π,π)(\pi,\pi) direction.Comment: figures have been condensed in fewer pages for easier readin

    Two-site dynamical mean field theory for the dynamic Hubbard model

    Full text link
    At zero temperature, two-site dynamical mean field theory is applied to the Dynamic Hubbard model. The Dynamic Hubbard model describes the orbital relaxation that occurs when two electrons occupy the same site, by using a two-level boson field at each site. At finite boson frequency, the appearance of a Mott gap is found to be enhanced even though it shows a metallic phase with the same bare on-site interaction UU in the conventional Hubbard model. The lack of electron-hole symmetry is highlighted through the quasi-particle weight and the single particle density of states at different fillings, which qualitatively differentiates the dynamic Hubbard model from other conventional Hubbard-like models.Comment: 13 pages, 15 figure

    Excited bands in odd-mass rare-earth nuclei

    Full text link
    Normal parity bands are studied in 157Gd, 163Dy and 169Tm using the pseudo SU(3) shell model. Energies and B(E2) transition strengths of states belonging to six low-lying rotational bands with the same parity in each nuclei are presented. The pseudo SU(3) basis includes states with pseudo-spin 0 and 1, and 1/2 and 3/2, for even and odd number of nucleons, respectively. States with pseudo-spin 1 and 3/2 must be included for a proper description of some excited bands.Comment: 8 pages, 6 figures, Submitted to Phys. Rev.

    Majoron emission in muon and tau decays revisited

    Get PDF
    In models where the breaking of lepton number is spontaneous a massless Goldstone boson, the Majoron (JJ), appears. We calculate the theoretically allowed range for the branching ratios of Majoron emitting charged lepton decays, such as Br(μeJ\mu \to e J) and Br(μeJγ\mu \to e J \gamma), in a supersymmetric model with spontaneous breaking of R-parity. Br(μeJ\mu\to eJ) is maximal in the same region of parameter space for which the lightest neutralino decays mainly invisibly. A measurement of Br(μeJ\mu\to eJ) thus potentially provides information on R-parity violation complementary to accelerator searches. We also briefly discuss existing bounds and prospects for future improvements on the Majoron coupling to charged leptons.Comment: 9 pages, 4 figure

    R-parity Conserving Supersymmetry, Neutrino Mass and Neutrinoless Double Beta Decay

    Get PDF
    We consider contributions of R-parity conserving softly broken supersymmetry (SUSY) to neutrinoless double beta (\znbb) decay via the (B-L)-violating sneutrino mass term. The latter is a generic ingredient of any weak-scale SUSY model with a Majorana neutrino mass. The new R-parity conserving SUSY contributions to \znbb are realized at the level of box diagrams. We derive the effective Lagrangian describing the SUSY-box mechanism of \znbb-decay and the corresponding nuclear matrix elements. The 1-loop sneutrino contribution to the Majorana neutrino mass is also derived. Given the data on the \znbb-decay half-life of 76^{76}Ge and the neutrino mass we obtain constraints on the (B-L)-violating sneutrino mass. These constraints leave room for accelerator searches for certain manifestations of the 2nd and 3rd generation (B-L)-violating sneutrino mass term, but are most probably too tight for first generation (B-L)-violating sneutrino masses to be searched for directly.Comment: LATEX, 29 pages + 4 (uuencoded) figures appende
    corecore