19,129 research outputs found

    An exploratory study investigating the impact of a differentiate framework of instruction on generalist teachers perceived confidence to teach visual arts

    Get PDF
    This article reports on an exploratory study that addressed the low confidence levels of 80 generalist primary student teachers enrolled in a mandatory visual arts course. Previous studies in this area have found that a cycle of neglect exists in Australia, as a result of educators’ lack of confidence in their ability to teach visual arts. This is believed to create a knock on effect whereby generalist primary student teachers enter mandatory tertiary visual arts units with little belief in their own art ability. This exploratory study centred on proactively applying the Tomlinson Model of differentiation in an effort to raise student confidence levels. By providing students with multiple avenues to access essential course understandings, students’ perceptions to teach visual arts changed significantly by course completion. This research has significance as there is a paucity of research re the implications of implementing a differentiated model of instruction at the tertiary leve

    Correcting 100 years of misunderstanding: electric fields in superconductors, hole superconductivity, and the Meissner effect

    Full text link
    From the outset of superconductivity research it was assumed that no electrostatic fields could exist inside superconductors, and this assumption was incorporated into conventional London electrodynamics. Yet the London brothers themselves initially (in 1935) had proposed an electrodynamic theory of superconductors that allowed for static electric fields in their interior, which they unfortunately discarded a year later. I argue that the Meissner effect in superconductors necessitates the existence of an electrostatic field in their interior, originating in the expulsion of negative charge from the interior to the surface when a metal becomes superconducting. The theory of hole superconductivity predicts this physics, and associated with it a macroscopic spin current in the ground state of superconductors ("Spin Meissner effect"), qualitatively different from what is predicted by conventional BCS-London theory. A new London-like electrodynamic description of superconductors is proposed to describe this physics. Within this theory superconductivity is driven by lowering of quantum kinetic energy, the fact that the Coulomb repulsion strongly depends on the character of the charge carriers, namely whether electron- or hole-like, and the spin-orbit interaction. The electron-phonon interaction does not play a significant role, yet the existence of an isotope effect in many superconductors is easily understood. In the strong coupling regime the theory appears to favor local charge inhomogeneity. The theory is proposed to apply to all superconducting materials, from the elements to the high TcT_c cuprates and pnictides, is highly falsifiable, and explains a wide variety of experimental observations.Comment: Proceedings of the conference "Quantum phenomena in complex matter 2011 - Stripes 2011", Rome, 10 July -16 July 2011, to be published in J. Supercond. Nov. Mag

    Towards an understanding of hole superconductivity

    Full text link
    From the very beginning K. Alex M\"uller emphasized that the materials he and George Bednorz discovered in 1986 were holehole superconductors. Here I would like to share with him and others what I believe to be thethe key reason for why high TcT_c cuprates as well as all other superconductors are hole superconductors, which I only came to understand a few months ago. This paper is dedicated to Alex M\"uller on the occasion of his 90th birthday.Comment: Dedicated to Alex M\"uller on the Occasion of his 90th Birthday. arXiv admin note: text overlap with arXiv:1703.0977

    R-parity violation: Hide & Seek

    Get PDF
    We point out that, if R-parity is broken spontaneously, the neutralino can decay to the final state majoron plus neutrino, which from the experimental point of view is indistinguishable from the standard missing momentum signal of supersymmetry. We identify the regions of parameter space where this decay mode is dominant and show that they are independent of R-parity conserving SUSY parameters. Thus, (a) only very weak limits on R-parity violating couplings can be derived from the observation of missing momentum events and (b) at future collider experiments huge statistics might be necessary to establish that R-parity indeed is broken. Parameter combinations which give calculated relic neutralino density larger than the measured dark matter density in case of conserved R-parity are valid points in this scenario and their phenomenology at the LHC deserves to be studied.Comment: 8 pages, 2 figures; ref. added; matches published version (title changed in the published version

    Belief Semantics of Authorization Logic

    Full text link
    Authorization logics have been used in the theory of computer security to reason about access control decisions. In this work, a formal belief semantics for authorization logics is given. The belief semantics is proved to subsume a standard Kripke semantics. The belief semantics yields a direct representation of principals' beliefs, without resorting to the technical machinery used in Kripke semantics. A proof system is given for the logic; that system is proved sound with respect to the belief and Kripke semantics. The soundness proof for the belief semantics, and for a variant of the Kripke semantics, is mechanized in Coq

    Nexus Authorization Logic (NAL): Logical Results

    Full text link
    Nexus Authorization Logic (NAL) [Schneider et al. 2011] is a logic for reasoning about authorization in distributed systems. A revised version of NAL is given here, including revised syntax, a revised proof theory using localized hypotheses, and a new Kripke semantics. The proof theory is proved sound with respect to the semantics, and that proof is formalized in Coq

    Electronic dynamic Hubbard model: exact diagonalization study

    Full text link
    A model to describe electronic correlations in energy bands is considered. The model is a generalization of the conventional Hubbard model that allows for the fact that the wavefunction for two electrons occupying the same Wannier orbital is different from the product of single electron wavefunctions. We diagonalize the Hamiltonian exactly on a four-site cluster and study its properties as function of band filling. The quasiparticle weight is found to decrease and the quasiparticle effective mass to increase as the electronic band filling increases, and spectral weight in one- and two-particle spectral functions is transfered from low to high frequencies as the band filling increases. Quasiparticles at the Fermi energy are found to be more 'dressed' when the Fermi level is in the upper half of the band (hole carriers) than when it is in the lower half of the band (electron carriers). The effective interaction between carriers is found to be strongly dependent on band filling becoming less repulsive as the band filling increases, and attractive near the top of the band in certain parameter ranges. The effective interaction is most attractive when the single hole carriers are most heavily dressed, and in the parameter regime where the effective interaction is attractive, hole carriers are found to 'undress', hence become more like electrons, when they pair. It is proposed that these are generic properties of electronic energy bands in solids that reflect a fundamental electron-hole asymmetry of condensed matter. The relation of these results to the understanding of superconductivity in solids is discussed.Comment: Small changes following referee's comment

    Anderson's "Theorem" and Bogoliubov-de Gennes Equations for Surfaces and Impurities

    Full text link
    In order to incorporate spatial inhomogeneity due to nonmagnetic impurities, Anderson [1] proposed a BCS-type theory in which single-particle states in such an inhomogeneous system are used. We examine Anderson's proposal, in comparison with the Bogoliubov-de Gennes equations, for the attractive Hubbard model on a system with surfaces and impurities. [1] P. W. Anderson, J. Phys. Chem. Solids {\bf 11}, 26 (1959).Comment: 2 pages, 2 figures, submitted to Physica C for M2S-HTSC-VI Proceeding
    • …
    corecore