25,024 research outputs found
Evolving Lucene search queries for text classification
We describe a method for generating accurate, compact, human
understandable text classifiers. Text datasets are indexed using Apache Lucene and Genetic Programs are used to construct
Lucene search queries. Genetic programs acquire fitness by
producing queries that are effective binary classifiers for a
particular category when evaluated against a set of training
documents. We describe a set of functions and terminals and
provide results from classification tasks
Quantum Monte Carlo and exact diagonalization study of a dynamic Hubbard model
A one-dimensional model of electrons locally coupled to spin-1/2 degrees of
freedom is studied by numerical techniques. The model is one in the class of
that describe the relaxation of an atomic orbital
upon double electron occupancy due to electron-electron interactions. We study
the parameter regime where pairing occurs in this model by exact
diagonalization of small clusters. World line quantum Monte Carlo simulations
support the results of exact diagonalization for larger systems and show that
kinetic energy is lowered when pairing occurs. The qualitative physics of this
model and others in its class, obtained through approximate analytic
calculations, is that superconductivity occurs through hole undressing even in
parameter regimes where the effective on-site interaction is strongly
repulsive. Our numerical results confirm the expected qualitative behavior, and
show that pairing will occur in a substantially larger parameter regime than
predicted by the approximate low energy effective Hamiltonian.Comment: Some changes made in response to referees comments. To be published
in Phys.Rev.
Relation algebras from cylindric algebras, I
Accepted versio
Correcting 100 years of misunderstanding: electric fields in superconductors, hole superconductivity, and the Meissner effect
From the outset of superconductivity research it was assumed that no
electrostatic fields could exist inside superconductors, and this assumption
was incorporated into conventional London electrodynamics. Yet the London
brothers themselves initially (in 1935) had proposed an electrodynamic theory
of superconductors that allowed for static electric fields in their interior,
which they unfortunately discarded a year later. I argue that the Meissner
effect in superconductors necessitates the existence of an electrostatic field
in their interior, originating in the expulsion of negative charge from the
interior to the surface when a metal becomes superconducting. The theory of
hole superconductivity predicts this physics, and associated with it a
macroscopic spin current in the ground state of superconductors ("Spin Meissner
effect"), qualitatively different from what is predicted by conventional
BCS-London theory. A new London-like electrodynamic description of
superconductors is proposed to describe this physics. Within this theory
superconductivity is driven by lowering of quantum kinetic energy, the fact
that the Coulomb repulsion strongly depends on the character of the charge
carriers, namely whether electron- or hole-like, and the spin-orbit
interaction. The electron-phonon interaction does not play a significant role,
yet the existence of an isotope effect in many superconductors is easily
understood. In the strong coupling regime the theory appears to favor local
charge inhomogeneity. The theory is proposed to apply to all superconducting
materials, from the elements to the high cuprates and pnictides, is
highly falsifiable, and explains a wide variety of experimental observations.Comment: Proceedings of the conference "Quantum phenomena in complex matter
2011 - Stripes 2011", Rome, 10 July -16 July 2011, to be published in J.
Supercond. Nov. Mag
Relation algebras with n-dimensional relational bases
Accepted versio
Strongly representable atom structures of relation algebras
Accepted versio
Electromotive forces and the Meissner effect puzzle
In a voltaic cell, positive (negative) ions flow from the low (high)
potential electrode to the high (low) potential electrode, driven by an
`electromotive force' which points in opposite direction and overcomes the
electric force. Similarly in a superconductor charge flows in direction
opposite to that dictated by the Faraday electric field as the magnetic field
is expelled in the Meissner effect. The puzzle is the same in both cases: what
drives electric charges against electromagnetic forces? I propose that the
answer is also the same in both cases: kinetic energy lowering, or `quantum
pressure'
Towards an understanding of hole superconductivity
From the very beginning K. Alex M\"uller emphasized that the materials he and
George Bednorz discovered in 1986 were superconductors. Here I would
like to share with him and others what I believe to be key reason for why
high cuprates as well as all other superconductors are hole
superconductors, which I only came to understand a few months ago. This paper
is dedicated to Alex M\"uller on the occasion of his 90th birthday.Comment: Dedicated to Alex M\"uller on the Occasion of his 90th Birthday.
arXiv admin note: text overlap with arXiv:1703.0977
Belief Semantics of Authorization Logic
Authorization logics have been used in the theory of computer security to
reason about access control decisions. In this work, a formal belief semantics
for authorization logics is given. The belief semantics is proved to subsume a
standard Kripke semantics. The belief semantics yields a direct representation
of principals' beliefs, without resorting to the technical machinery used in
Kripke semantics. A proof system is given for the logic; that system is proved
sound with respect to the belief and Kripke semantics. The soundness proof for
the belief semantics, and for a variant of the Kripke semantics, is mechanized
in Coq
Nexus Authorization Logic (NAL): Logical Results
Nexus Authorization Logic (NAL) [Schneider et al. 2011] is a logic for
reasoning about authorization in distributed systems. A revised version of NAL
is given here, including revised syntax, a revised proof theory using localized
hypotheses, and a new Kripke semantics. The proof theory is proved sound with
respect to the semantics, and that proof is formalized in Coq
- …