134 research outputs found

    Molecular Mechanisms Underlying Ca2+/Calmodulin-Dependent Protein Kinase Kinase Signal Transduction

    Get PDF
    Ca2+/calmodulin-dependent protein kinase kinase (CaMKK) is the activating kinase for multiple downstream kinases, including CaM-kinase I (CaMKI), CaM-kinase IV (CaMKIV), protein kinase B (PKB/Akt), and 5'AMP-kinase (AMPK), through the phosphorylation of their activation-loop Thr residues in response to increasing the intracellular Ca2+ concentration, as CaMKK itself is a Ca2+/CaM-dependent enzyme. The CaMKK-mediated kinase cascade plays important roles in a number of Ca2+-dependent pathways, such as neuronal morphogenesis and plasticity, transcriptional activation, autophagy, and metabolic regulation, as well as in pathophysiological pathways, including cancer progression, metabolic syndrome, and mental disorders. This review focuses on the molecular mechanism underlying CaMKK-mediated signal transduction in normal and pathophysiological conditions. We summarize the current knowledge of the structural, functional, and physiological properties of the regulatory kinase, CaMKK, and the development and application of its pharmacological inhibitors

    Phosphorylation and dephosphorylation of Ca2+/calmodulin-dependent protein kinase kinase β at Thr144 in HeLa cells

    Get PDF
    Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) acts as a regulatory kinase that phosphorylates and activates multiple downstream kinases including CaMKI, CaMKIV, 5′AMP-activated protein kinase (AMPK) and protein kinase B (PKB), resulting in regulation of wide variety of Ca2+-dependent physiological responses under normal and pathological conditions. CaMKKβ is regulated by Ca2+/calmodulin-binding, autophosphorylation, and transphosphorylation by multiple protein kinases including cAMP-dependent protein kinase (PKA). In this report, we found that phosphorylation of CaMKKβ is dynamically regulated by protein phosphatase/kinase system in HeLa cells. Global phosphoproteomic analysis revealed the constitutive phosphorylation at 8 Ser residues including Ser128, 132, and 136 in the N-terminal regulatory domain of rat CaMKKβ in unstimulated HeLa cells as well as inducible phosphorylation of Thr144 in the cells treated with a phosphatase inhibitor, okadaic acid (OA). Thr144 phosphorylation in CaMKKβ has shown to be rapidly induced by OA treatment in a time- and dose-dependent manner in transfected HeLa cells, indicating that Thr144 in CaMKKβ is maintained unphosphorylated state by protein phosphatase(s). We confirmed that in vitro dephosphorylation of pThr144 in CaMKKβ by protein phosphatase 2A and 1. We also found that the pharmacological inhibition of protein phosphatase(s) significantly induces CaMKKβ-phosphorylating activity (at Thr144) in HeLa cell lysates as well as in intact cells; however, it was unlikely that this activity was catalyzed by previously identified Thr144-kinases, such as AMPK and PKA. Taken together, these results suggest that the phosphorylation and dephosphorylation of Thr144 in CaMKKβ is dynamically regulated by multiple kinases/phosphatases signaling resulting in fine-tuning of the enzymatic property

    Epigenetic Silencing of HOPX Promotes Cancer Progression in Colorectal Cancer

    Get PDF
    AbstractHomeodomain-only protein X (HOPX)-β promoter methylation was recently shown to be frequent in human cancers and was suggested as tumor suppressor gene in esophageal and gastric cancer. The aim of this study was to investigate the mechanistic roles of HOPX-β promoter methylation and its clinical relevance in colorectal cancer (CRC). HOPX-β promoter methylation was assessed in human CRC cell lines and 294 CRC tissues. HOPX mRNA and protein levels were measured in relation to HOPX-β promoter methylation. The effects of forced HOPX expression on tumorigenesis were studied using in vitro and in vivo assays. The association between HOPX-β promoter methylation and clinical relevance of CRC patients was determined. HOPX-β promoter methylation is cancer-specific and frequently found in CRC cell lines and tissues, resulting in the down-regulation of HOPX mRNA and protein levels. In CRC cell lines, forced expression of HOPX suppressed proliferation, invasion, and anchorage-independent growth. DNA microarray analyses suggested critical downstream genes that are associated with cancer cell proliferation, invasion or angiogenesis. In a mouse xenograft model, HOPX inhibited tumorigenesis and angiogenesis. Finally, HOPX-β promoter methylation was associated with worse prognosis of stage III CRC patients (hazard ratio= 1.40, P = .035) and also with poor differentiation (P = .014). In conclusion, HOPX-β promoter methylation is a frequent and cancer-specific event in CRC progression. This epigenetic alteration may have clinical ramifications in the diagnosis and treatment of CRC patients

    経皮的冠動脈インターベンションにおけるステント血栓症発症に特徴的なステント留置後の光干渉断層法の冠動脈内の所見

    Get PDF
    Background:The association between unfavorable post-stent optical coherence tomography (OCT) findings and subsequent stent thrombosis (ST) remains unclear. This study investigated the ST-related characteristics of post-stent OCT findings at index percutaneous coronary intervention (PCI). Methods and Results:Fifteen patients with ST onset after OCT-guided PCI (ST group) were retrospectively enrolled. Post-stent OCT findings in the ST group were compared with those in 70 consecutive patients (reference group) without acute coronary syndrome onset for at least 5 years after OCT-guided PCI. The incidence of acute myocardial infarction (AMI) was higher in the ST than reference group (60.0% vs. 17.1%, respectively; P=0.0005). The incidence of incomplete stent apposition (93.3% vs. 55.7%; P=0.0064), irregular protrusion (IP; 93.3% vs. 62.8%; P=0.0214), and thrombus (93.3% vs. 51.4%; P=0.0028) was significantly higher in the ST than reference group. The maximum median (interquartile range) IP arc was significantly larger in the ST than reference group (265° [217°–360°] vs. 128° [81.4°–212°], respectively; P180° was significantly higher in the ST than reference group (100% vs. 58.3%, respectively; P=0.0265). Conclusions:IP with a large arc was a significant feature on post-stent OCT in patients with ST.博士(医学)・甲第868号・令和5年3月15

    Comprehensive Behavioral Analysis of Calcium/Calmodulin-Dependent Protein Kinase IV Knockout Mice

    Get PDF
    Calcium-calmodulin dependent protein kinase IV (CaMKIV) is a protein kinase that activates the transcription factor CREB, the cyclic AMP-response element binding protein. CREB is a key transcription factor in synaptic plasticity and memory consolidation. To elucidate the behavioral effects of CaMKIV deficiency, we subjected CaMKIV knockout (CaMKIV KO) mice to a battery of behavioral tests. CaMKIV KO had no significant effects on locomotor activity, motor coordination, social interaction, pain sensitivity, prepulse inhibition, attention, or depression-like behavior. Consistent with previous reports, CaMKIV KO mice exhibited impaired retention in a fear conditioning test 28 days after training. In contrast, however, CaMKIV KO mice did not show any testing performance deficits in passive avoidance, one of the most commonly used fear memory paradigms, 28 days after training, suggesting that remote fear memory is intact. CaMKIV KO mice exhibited intact spatial reference memory learning in the Barnes circular maze, and normal spatial working memory in an eight-arm radial maze. CaMKIV KO mice also showed mildly decreased anxiety-like behavior, suggesting that CaMKIV is involved in regulating emotional behavior. These findings indicate that CaMKIV might not be essential for fear memory or spatial memory, although it is possible that the activities of other neural mechanisms or signaling pathways compensate for the CaMKIV deficiency

    Magnetized Fast Isochoric Laser Heating for Efficient Creation of Ultra-High-Energy-Density States

    Full text link
    The quest for the inertial confinement fusion (ICF) ignition is a grand challenge, as exemplified by extraordinary large laser facilities. Fast isochoric heating of a pre-compressed plasma core with a high-intensity short-pulse laser is an attractive and alternative approach to create ultra-high-energy-density states like those found in ICF ignition sparks. This avoids the ignition quench caused by the hot spark mixing with the surrounding cold fuel, which is the crucial problem of the currently pursued ignition scheme. High-intensity lasers efficiently produce relativistic electron beams (REB). A part of the REB kinetic energy is deposited in the core, and then the heated region becomes the hot spark to trigger the ignition. However, only a small portion of the REB collides with the core because of its large divergence. Here we have demonstrated enhanced laser-to-core energy coupling with the magnetized fast isochoric heating. The method employs a kilo-tesla-level magnetic field that is applied to the transport region from the REB generation point to the core which results in guiding the REB along the magnetic field lines to the core. 7.7 ±\pm 1.3 % of the maximum coupling was achieved even with a relatively small radial area density core (ρR\rho R \sim 0.1 g/cm2^2). The guided REB transport was clearly visualized in a pre-compressed core by using Cu-KαK_\alpha imaging technique. A simplified model coupled with the comprehensive diagnostics yields 6.2\% of the coupling that agrees fairly with the measured coupling. This model also reveals that an ignition-scale areal density core (ρR\rho R \sim 0.4 g/cm2^2) leads to much higher laser-to-core coupling (>> 15%), this is much higher than that achieved by the current scheme

    New Features on the Expression and Trafficking of mGluR1 Splice Variants Exposed by Two Novel Mutant Mouse Lines

    Get PDF
    Metabotropic glutamate receptors (mGluRs) couple to G-proteins to modulate slow synaptic transmission via intracellular second messengers. The first cloned mGluR, mGluR1, regulates motor coordination, synaptic plasticity and synapse elimination. mGluR1 undergoes alternative splicing giving rise to four translated variants that differ in their intracellular C-terminal domains. Our current knowledge about mGluR1 relates almost entirely to the long mGluR1α isoform, whereas little is known about the other shorter variants. To study the expression of mGluR1γ, we have generated by means of the CRISPR/Cas9 system a new knock-in (KI) mouse line in which the C-terminus of this variant carries two short tags. Using this mouse line, we could establish that mGluR1γ is either untranslated or in amounts that are undetectable in the mouse cerebellum, indicating that only mGluR1α and mGluR1β are present and active at cerebellar synapses. The trafficking and function of mGluR1 appear strongly influenced by adaptor proteins such as long Homers that bind to the C-terminus of mGluR1α. We generated a second transgenic (Tg) mouse line in which mGluR1α carries a point mutation in its Homer binding domain and studied whether disruption of this interaction influenced mGluR1 subcellular localization at cerebellar parallel fiber (PF)-Purkinje cell (PC) synapses by means of the freeze-fracture replica immunolabeling technique. These Tg animals did not show any overt behavioral phenotype, and despite the typical mGluR1 perisynaptic distribution was not significantly changed, we observed a higher probability of intrasynaptic diffusion suggesting that long Homers regulate the lateral mobility of mGluR1. We extended our ultrastructural analysis to other mouse lines in which only one mGluR1 variant was reintroduced in PC of mGluR1-knock out (KO) mice. This work revealed that mGluR1α preferentially accumulates closer to the edge of the postsynaptic density (PSD), whereas mGluR1β has a less pronounced perijunctional distribution and, in the absence of mGluR1α, its trafficking to the plasma membrane is impaired with an accumulation in intracellular organelles. In conclusion, our study sets several firm points on largely disputed matters, namely expression of mGluR1γ and role of the C-terminal domain of mGluR1 splice variants on their perisynaptic clustering
    corecore