61 research outputs found

    気道上皮細胞におけるInterleukin-17A及びウイルスdouble-stranded RNAによるケモカイン産生の影響と細胞内シグナリングの研究

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 中島 淳, 東京大学教授 岡崎 仁, 東京大学准教授 北 芳博, 東京大学講師 立石 敬介, 東京大学講師 槙田 紀子University of Tokyo(東京大学

    Transarterial embolization for convexity dural arteriovenous fistula

    Get PDF
    Background: Convexity dural arteriovenous fistulae (dAVF) usually reflux into cortical veins without involving the venous sinuses. Although direct drainage ligation is curative, transarterial embolization (TAE) may be an alternative treatment. Case Description: Between September 2018 and January 2021, we encountered four patients with convexity dAVFs. They were three males and one female; their age ranged from 36 to 73 years. The initial symptom was headache (n = 1) or seizure (n = 2); one patient was asymptomatic. In all patients, the feeders were external carotid arteries with drainage into the cortical veins; in two patients, there was pial arterial supply from the middle cerebral artery. All patients were successfully treated by TAE alone using either Onyx or N-butyl cyanoacrylate embolization. Two patients required two sessions. All dAVFs were completely occluded and follow-up MRI or angiograms confirmed no recurrence. Conclusion: Our small series suggests that TAE with a liquid embolic material is an appropriate first-line treatment in patients with convexity dAVFs with or without pial arterial supply

    Bioluminescent system for dynamic imaging of cell and animal behavior

    Get PDF
    AbstractThe current utility of bioluminescence imaging is constrained by a low photon yield that limits temporal sensitivity. Here, we describe an imaging method that uses a chemiluminescent/fluorescent protein, ffLuc-cp156, which consists of a yellow variant of Aequorea GFP and firefly luciferase. We report an improvement in photon yield by over three orders of magnitude over current bioluminescent systems. We imaged cellular movement at high resolution including neuronal growth cones and microglial cell protrusions. Transgenic ffLuc-cp156 mice enabled video-rate bioluminescence imaging of freely moving animals, which may provide a reliable assay for drug distribution in behaving animals for pre-clinical studies

    Oligomerization-function relationship of EGFR on living cells detected by the coiled-coil labeling and FRET microscopy.

    Get PDF
    The epidermal growth factor receptor (EGFR) is a well-studied receptor tyrosine kinase and an important anticancer therapeutic target. The activity of EGFR autophosphorylation and transphosphorylation, which induces several cell signaling pathways, has been suggested to be related to its oligomeric state. However, the oligomeric states of EGFRs induced by EGF binding and the receptor-ligand stoichiometry required for its activation are still controversial. In the present study, we performed Förster resonance energy transfer (FRET) measurements by combining the coiled-coil tag-probe labeling method and spectral imaging to quantitatively analyze EGFR oligomerization on living CHO-K1 cell membranes at physiological expression levels. In the absence of its ligands, EGFRs mainly existed as monomers with a small fraction of predimers (~10%), whereas ~70% of the EGFRs formed dimers after being stimulated with the ligand EGF. Ligand-induced dimerization was not significantly affected by the perturbation of membrane components (cholesterol or monosialoganglioside GM3). We also investigated both dose and time dependences of EGF-dependent EGFR dimerization and autophosphorylation. The formation of dimers occurred within 20s of the ligand stimulation and preceded its autophosphorylation, which reached a plateau 90s after the stimulation. The EGF concentration needed to evoke half-maximum dimerization (~1nM) was lower than that for half-maximum autophosphorylation (~8nM), which suggested the presence of an inactive dimer binding a single EGF molecule

    Lymphotoxin β receptor signaling induces IL-8 production in human bronchial epithelial cells.

    No full text
    Asthma-related mortality has been decreasing due to inhaled corticosteroid use, but severe asthma remains a major clinical problem. One characteristic of severe asthma is resistance to steroid therapy, which is related to neutrophilic inflammation. Recently, the tumor necrosis factor superfamily member (TNFSF) 14/LIGHT has been recognized as a key mediator in severe asthmatic airway inflammation. However, the profiles and intracellular mechanisms of cytokine/chemokine production induced in cells by LIGHT are poorly understood. We aimed to elucidate the molecular mechanism of LIGHT-induced cytokine/chemokine production by bronchial epithelial cells. Human bronchial epithelial cells express lymphotoxin β receptor (LTβR), but not herpesvirus entry mediator, which are receptors for LIGHT. LIGHT induced various cytokines/chemokines, such as interleukin (IL)-6, oncostatin M, monocyte chemotactic protein-1, growth-regulated protein α and IL-8. Specific siRNA for LTβR attenuated IL-6 and IL-8 production by BEAS-2B and normal human bronchial epithelial cells. LIGHT activated intracellular signaling, such as mitogen-activated protein kinase and nuclear factor-κB (NF-κB) signaling. LIGHT also induced luciferase activity of NF-κB response element, but not of activator protein-1 or serum response element. Specific inhibitors of phosphorylation of extracellular signal-regulated kinase (Erk) and that of inhibitor κB attenuated IL-8 production, suggesting that LIGHT-LTβR signaling induces IL-8 production via the Erk and NF-κB pathways. LIGHT, via LTβR signaling, may contribute to exacerbation of airway neutrophilic inflammation through cytokine and chemokine production by bronchial epithelial cells

    Interleukin-17A and Toll-Like Receptor 3 Ligand Poly(I:C) Synergistically Induced Neutrophil Chemoattractant Production by Bronchial Epithelial Cells.

    No full text
    Chronic inflammatory airway diseases, such as bronchial asthma and chronic obstructive pulmonary disease, are common respiratory disorders worldwide. Exacerbations of these diseases are frequent and worsen patients' respiratory condition and overall health. However, the mechanisms of exacerbation have not been fully elucidated. Recently, it was reported that interleukin (IL)-17A might play an important role in neutrophilic inflammation, which is characteristic of such exacerbations, through increased production of neutrophil chemoattractants. Therefore, we hypothesized that IL-17A was involved in the pathogenesis of acute exacerbation, due to viral infection in chronic inflammatory airway diseases. In this study, we assessed chemokine production by bronchial epithelial cells and investigated the underlying mechanisms. Comprehensive chemokine analysis showed that, compared with poly(I:C) alone, co-stimulation of BEAS-2B cells with IL-17A and poly(I:C) strongly induced production of such neutrophil chemoattractants as CXC chemokine ligand (CXCL)8, growth-related oncogene (GRO), and CXCL1. Co-stimulation synergistically induced CXCL8 and CXCL1 mRNA and protein production by BEAS-2B cells and normal human bronchial epithelial cells. Poly(I:C) induced chemokine expression by BEAS-2B cells mainly via Toll-like receptor 3/TIR-domain-containing adapter-inducing interferon-β-mediated signals. The co-stimulation with IL-17A and poly(I:C) markedly activated the p38 and extracellular-signal-regulated kinase 1/2 pathway, compared with poly(I:C), although there was little change in nuclear factor-κB translocation into the nucleus or the transcriptional activities of nuclear factor-κB and activator protein 1. IL-17A promoted stabilization of CXCL8 mRNA in BEAS-2B cells treated with poly(I:C). In conclusion, IL-17A appears to be involved in the pathogenesis of chronic inflammatory airway disease exacerbation, due to viral infection by promoting release of neutrophil chemoattractants from bronchial epithelial cells
    corecore