72 research outputs found

    Development of Track Condition Monitoring System Using Onboard Sensing Device

    Get PDF
    Monitoring the conditions of railway tracks is essential for ensuring the railway safety. In-service vehicles equipped with sensors and GPS systems can act as probes to detect and analyse real-time vehicle vibration. Recently, a compact on-board sensing device has been developed. This chapter describes the track condition monitoring system that uses a compact on-board sensing device and diagnosis software. The diagnosis software provides the function of detecting track faults using the root mean square (RMS) of the car-body acceleration. It also allows analysis in the time-frequency domain using wavelet transform. A monitoring experiment in a local railway line showed that the system is effective for practical application

    Phaseâ amplitude coupling between interictal highâ frequency activity and slow waves in epilepsy surgery

    Full text link
    ObjectiveWe hypothesized that the modulation index (MI), a summary measure of the strength of phaseâ amplitude coupling between highâ frequency activity (>150 Hz) and the phase of slow waves (3â 4 Hz), would serve as a useful interictal biomarker for epilepsy presurgical evaluation.MethodsWe investigated 123 patients who underwent focal cortical resection following extraoperative electrocorticography recording and had at least 1 year of postoperative followâ up. We examined whether consideration of MI would improve the prediction of postoperative seizure outcome. MI was measured at each intracranial electrode site during interictal slowâ wave sleep. We compared the accuracy of prediction of patients achieving International League Against Epilepsy class 1 outcome between the full multivariate logistic regression model incorporating MI in addition to conventional clinical, seizure onset zone (SOZ), and neuroimaging variables, and the reduced logistic regression model incorporating all variables other than MI.ResultsNinety patients had class 1 outcome at the time of most recent followâ up (mean followâ up = 5.7 years). The full model had a noteworthy outcome predictive ability, as reflected by regression model fit R2 of 0.409 and area under the curve (AUC) of receiver operating characteristic plot of 0.838. Incomplete resection of SOZ (P < 0.001), larger number of antiepileptic drugs at the time of surgery (P = 0.007), and larger MI in nonresected tissues relative to that in resected tissue (P = 0.020) were independently associated with a reduced probability of class 1 outcome. The reduced model had a lower predictive ability as reflected by R2 of 0.266 and AUC of 0.767. Anatomical variability in MI existed among nonepileptic electrode sites, defined as those unaffected by magnetic resonance imaging lesion, SOZ, or interictal spike discharges. With MI adjusted for anatomical variability, the full model yielded the outcome predictive ability of R2 of 0.422, AUC of 0.844, and sensitivity/specificity of 0.86/0.76.SignificanceMI during interictal recording may provide useful information for the prediction of postoperative seizure outcome.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146440/1/epi14544_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146440/2/epi14544.pd

    Default mode network in young male adults with autism spectrum disorder: Relationship with autism spectrum traits

    Get PDF
    Background: Autism spectrum traits are postulated to lie on a continuum that extends between individuals with autism and individuals with typical development (TD). Social cognition properties that are deeply associated with autism spectrum traits have been linked to functional connectivity between regions within the brain\u27s default mode network (DMN). Previous studies have shown that the resting-state functional connectivities (rs-FCs) of DMN are low and show negative correlation with the level of autism spectrum traits in individuals with autism spectrum disorder (ASD). However, it is unclear whether individual differences of autism spectrum traits are associated with the strength of rs-FCs of DMN in participants including the general population. Methods. Using the seed-based approach, we investigated the rs-FCs of DMN, particularly including the following two core regions of DMN: the anterior medial prefrontal cortex (aMPFC) and posterior cingulate cortex (PCC) in 19 young male adults with high-functioning ASD (mean age = 25.3 ± 6.9 years; autism-spectrum quotient (AQ) = 33.4 ± 4.2; full scale IQ (F-IQ) = 109.7 ± 12.4) compared with 21 age- and IQ-matched young male adults from the TD group (mean age = 24.8 ± 4.3 years; AQ = 18.6 ± 5.7; F-IQ = 109.5 ± 8.7). We also analyzed the correlation between the strength of rs-FCs and autism spectrum traits measured using AQ score. Results: The strengths of rs-FCs from core regions of DMN were significantly lower in ASD participants than TD participants. Under multiple regression analysis, the strengths of rs-FCs in brain areas from aMPFC seed showed negative correlation with AQ scores in ASD participants and TD participants. Conclusions: Our findings suggest that the strength of rs-FCs in DMN is associated with autism spectrum traits in the TD population as well as patients with ASD, supporting the continuum view. The rs-FCs of DMN may be useful biomarkers for the objective identification of autism spectrum traits, regardless of ASD diagnosis. © 2014 Jung et al.; licensee BioMed Central Ltd

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Examination of ANP secretion-atrial specific granules and hemodynamics

    Get PDF
    To clarify factors affecting atrial natriuretic peptide (ANP) secretion, the relationship between blood ANP level and intracardiac pressure, and that between the number of atrial specific granules (ASG) in the right atrial auricle and ANP level were investigated in 21 patients undergoing extracorporeal circulation. In the atrial loaded group, the Group TR (Tricuspid regurgitation) served as right atrial load and Group M (Mitral valve disease) as left atrial load, ANP and the number of ASG were compared with those in the control group. Accordingly, the effect of atrial load on ANP secretion and the number of ASG were investigated. Moreover, ANP and the number of ASG in the atrial myolysis group {Group A f(atrial fibrillation)} were compared with those of the sinus rhythm group to determine effect of atrio-myolysis. The ANP level showed a positive correlation with left atrial pressure (r=0.820 p<0.01) and with left ventricular end-diastolic pressure (r=0.726 p<0.01), but no correlation with right atrial pressure nor ventricular pressure. The ANP level in Group M was significantly higher than other groups, but there was no significant difference compared with Group TR. Consequently, the left atrium and rihgt atrium were considered to have different effects on ANP secretion

    Optimization Method for Operation Schedule of Microgrids Considering Uncertainty in Available Data

    No full text
    Operation scheduling in electric power grids is one of the most practical optimization problems as it sets a target for the efficient management of the electric power supply and demand. Advancement of a method to solve this issue is crucially required, especially in microgrids. This is because the operational capability of microgrids is generally lower than that of conventional bulk power grids, and therefore, it is extremely important to develop an appropriate, coordinated operation schedule of the microgrid components. Although various techniques have been developed to solve the problem, there is no established solution. The authors propose a problem framework and a solution method that finds the optimal operation schedule of the microgrid components considering the uncertainty in the available data. In the authors’ proposal, the objective function of the target problem is formulated as the expected cost of the microgrid’s operations. Since the risk of imbalance in the power supply and demand is evaluated as a part of the objective function, the necessary operational reserve power is automatically calculated. The usefulness of the proposed problem framework and its solution method was verified through numerical simulations and the results are discussed
    corecore