337 research outputs found

    Kramers degeneracy theorem in nonrelativistic QED

    Full text link
    Degeneracy of the eigenvalues of the Pauli-Fierz Hamiltonian with spin 1/2 is proven by the Kramers degeneracy theorem. The Pauli-Fierz Hamiltonian at fixed total momentum is also investigated.Comment: LaTex, 11 page

    Field evolution of the magnetic structures in Er2_2Ti2_2O7_7 through the critical point

    Full text link
    We have measured neutron diffraction patterns in a single crystal sample of the pyrochlore compound Er2_2Ti2_2O7_7 in the antiferromagnetic phase (T=0.3\,K), as a function of the magnetic field, up to 6\,T, applied along the [110] direction. We determine all the characteristics of the magnetic structure throughout the quantum critical point at HcH_c=2\,T. As a main result, all Er moments align along the field at HcH_c and their values reach a minimum. Using a four-sublattice self-consistent calculation, we show that the evolution of the magnetic structure and the value of the critical field are rather well reproduced using the same anisotropic exchange tensor as that accounting for the local paramagnetic susceptibility. In contrast, an isotropic exchange tensor does not match the moment variations through the critical point. The model also accounts semi-quantitatively for other experimental data previously measured, such as the field dependence of the heat capacity, energy of the dispersionless inelastic modes and transition temperature.Comment: 7 pages; 8 figure

    Ground State and Resonances in the Standard Model of Non-relativistic QED

    Full text link
    We prove existence of a ground state and resonances in the standard model of the non-relativistic quantum electro-dynamics (QED). To this end we introduce a new canonical transformation of QED Hamiltonians and use the spectral renormalization group technique with a new choice of Banach spaces.Comment: 50 pages change

    Pauli-Fierz model with Kato-class potentials and exponential decays

    Full text link
    Generalized Pauli-Fierz Hamiltonian with Kato-class potential \KPF in nonrelativistic quantum electrodynamics is defined and studied by a path measure. \KPF is defined as the self-adjoint generator of a strongly continuous one-parameter symmetric semigroup and it is shown that its bound states spatially exponentially decay pointwise and the ground state is unique.Comment: We deleted Lemma 3.1 in vol.

    General theory for decoy-state quantum key distribution with arbitrary number of intensities

    Full text link
    We develop a general theory for quantum key distribution (QKD) in both the forward error correction and the reverse error correction cases when the QKD system is equipped with phase-randomized coherent light with arbitrary number of decoy intensities. For this purpose, generalizing Wang's expansion, we derive a convex expansion of the phase-randomized coherent state. We also numerically check that the asymptotic key generation rates are almost saturated when the number of decoy intensities is three.Comment: This manuscript has been revised extensivel

    Uniqueness of the ground state in the Feshbach renormalization analysis

    Full text link
    In the operator theoretic renormalization analysis introduced by Bach, Froehlich, and Sigal we prove uniqueness of the ground state.Comment: 10 page

    Teleportation as a Depolarizing Quantum Channel, Relative Entropy and Classical Capacity

    Get PDF
    We show that standard teleportation with an arbitrary mixed state resource is equivalent to a generalized depolarizing channel with probabilities given by the maximally entangled components of the resource. This enables the usage of any quantum channel as a generalized depolarizing channel without additional twirling operations. It also provides a nontrivial upper bound on the entanglement of a class of mixed states. Our result allows a consistent and statistically motivated quantification of teleportation success in terms of the relative entropy and this quantification can be related to a classical capacity.Comment: Version published in Phys. Rev. Let

    Decoherence and Entanglement in Two-mode Squeezed Vacuum States

    Get PDF
    I investigate the decoherence of two-mode squeezed vacuum states by analyzing the relative entropy of entanglement. I consider two sources of decoherence: (i) the phase damping and (ii) the amplitude damping due to the coupling to the thermal environment. In particular, I give the exact value of the relative entropy of entanglement for the phase damping model. For the amplitude damping model, I give an upper bound for the relative entropy of entanglement, which turns out to be a good approximation for the entanglement measure in usual experimental situations.Comment: 5 pages, RevTex, 3 eps figure
    • …
    corecore