31 research outputs found

    Measurements of single-phase and two-phase flows in a vertical pipe using ultrasonic pulse Doppler method and ultrasonic time-domain cross-correlation method

    Get PDF
    Ultrasonic Velocity Profile (UVP) method for measurement of single-phase and two-phase flow in a vertical pipe has recently been developed in the Laboratory for industrial and Environmental Fluid Dynamics, Institute of Mechanics, VAST. The signal processings of the UVP method include the ultrasonic pulse Doppler method (UDM)and the ultrasonic time-domain cross-correlation (UTDC) method. For two-phase flow, simultaneous measurements of both liquid and gas are enabled by using a multi-wave ultrasonic transducer (multi-wave TDX). The multi-wave TDX is able to emit and receive ultrasound of two different center frequencies of 2 MHz and 8 MHz at the same time and position. 2 MHz frequency with beam diameter 10 mm is exploited for measurement of gas. 8 MHz one with beam diameter 3 mm is used for liquid. Measurements have been carried out for laminar and turbulent single-phase flows and bubbly counter-current two-phase flows in two flow loops using two vertical pipes of 26 mm inner diameter (I.D.) and 50 mm I.D. respectively. Based on the measured results, assessment of each method is clarified. Applicability of each method for different conditions of pipe flow has been tested. Suggestions for application of the two methods have been recommended

    Study on the Optimal Number of Transducers for Pipe Flow Rate Measurement Downstream of a Single Elbow Using the Ultrasonic Velocity Profile Method

    Get PDF
    This paper presents a new estimation method to determine the optimal number of transducers using an Ultrasonic Velocity Profile (UVP) for accurate flow rate measurement downstream of a single elbow. Since UVP can measure velocity profiles over a pipe diameter and calculate the flow rate by integrating these velocity profiles, it is also expected to obtain an accurate flow rate using multiple transducers under nondeveloped flow conditions formed downstream of an elbow. The new estimation method employs a wave number of velocity profile fluctuations along a circle on a pipe cross-section using Fast Fourier Transform (FFT). The optimal number of transducers is estimated based on the sampling theorem. To evaluate this method, a preliminary experiment and numerical simulations using Computational Fluid Dynamics (CFD) are conducted. The evaluating regions of velocity profiles are located at 3 times of a pipe diameter () for the experiment, and 1 and for the simulations downstream of an elbow, respectively. Reynolds numbers for the experiment and simulations are set at and , respectively. These results indicate the efficiency of this new method
    corecore