698 research outputs found

    Occlusal reconstruction of a patient with ameloblastoma ablation using alveolar distraction osteogenesis: a case report

    Get PDF
    Background Ameloblastoma is one of the most common benign odontogenic neoplasms. Its surgical excision has the potential to lead to postoperative malocclusion. In this case report, we describe the successful interdisciplinary orthodontic treatment of a patient with ameloblastoma who underwent marginal mandibulectomy. Case presentation A woman of 20-year-old was diagnosed with ameloblastoma, and underwent marginal mandibulectomy when she was 8 years of age. She had an excessive overjet (11.5 mm) and a mild open bite (- 1.5 mm) with a severely resorbed atrophic edentulous ridge in the area around the mandibular left lateral incisor, canine and first premolar. An alveolar bone defect associated with tumor resection was regenerated by vertical distraction osteogenesis (DO). Subsequently, 3 dental implants were placed into the reconstructed mandible. Orthodontic treatment using implant-anchored mechanics provided a proper facial profile with significantly improved occlusal function. The occlusion appeared stable for a 7-year retention period. Conclusions These results suggest that surgically assisted and implant anchored-orthodontic approaches might be effective for the correction of such malocclusions

    Herpes simplex virus type 2 tegument protein UL56 relocalizes ubiquitin ligase Nedd4 and has a role in transport and/or release of virions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ubiquitin system functions in a variety of cellular processes including protein turnover, protein sorting and trafficking. Many viruses exploit the cellular ubiquitin system to facilitate viral replication. In fact, herpes simplex virus (HSV) encodes a ubiquitin ligase (E3) and a de-ubiquitinating enzyme to modify the host's ubiquitin system. We have previously reported HSV type 2 (HSV-2) tegument protein UL56 as a putative adaptor protein of neuronal precursor cell-expressed developmentally down-regulated 4 (Nedd4) E3 ligase, which has been shown to be involved in protein sorting and trafficking.</p> <p>Results</p> <p>In this study, we visualized and characterized the dynamic intracellular localization of UL56 and Nedd4 using live-cell imaging and immunofluorescence analysis. UL56 was distributed to cytoplasmic vesicles, primarily to the trans-Golgi network (TGN), and trafficked actively throughout the cytoplasm. Moreover, UL56 relocalized Nedd4 to the vesicles in cells transiently expressing UL56 and in cells infected with HSV-2. We also investigated whether UL56 influenced the efficiency of viral replication, and found that extracellular infectious viruses were reduced in the absence of UL56.</p> <p>Conclusion</p> <p>These data suggest that UL56 regulates Nedd4 and functions to facilitate the cytoplasmic transport of virions from TGN to the plasma membrane and/or release of virions from the cell surface.</p

    Effects of photonic band gap of cholesteric liquid crystal on chemiluminescence

    Full text link
    We have fabricated glass cells filled with cholesteric liquid crystalline materials (CLC reflectors), which are mixtures of a nematic liquid crystalline mixture, ZLI-2293 (Merck), and a chiral dopant, MLC-6248 (Merck). We reported the enhancement of the maximum emission intensity of luminol reaction by the photonic band gap (PBG) of the CLC reflectors. Here, we report the effect of the relative position of PBG of the CLC reflectors to the emission spectra of luminol reaction on the enhancement of the maximum emission intensity. © 2015This is an Accepted Manuscript of an article published by Taylor & Francis in Molecular Crystals and Liquid Crystals on 24 May 2015, available at https://doi.org/10.1080/15421406.2015.1032725

    Ovarian strumal carcinoid: a case report

    Get PDF
    Background: Carcinoid tumors of the ovary are rare tumors, histopathologically classified as monodermal teratomas and somatic-type tumors arising from dermoid cysts. Their malignancy varies from borderline to malignant. Carcinoid tumors can occur in young and elderly women, and are sometimes seen in mature teratoma, struma ovarii, or mucinous cystadenoma as a nodule or tumor. Strumal carcinoid and mucinous carcinoid present as special types of carcinoid tumors of the ovary. Case report: This report describes a 56-year-old woman who presented with a large pelvic mass on abdominal ultrasonography during a medical examination. The diameter of the pelvic tumor was approximately 11 cm and was suspected to be ovarian cancer. The values of CA125 and CEA were above their reference intervals on preoperative examination. Abdominal total hysterectomy and bilateral salpingo-oophorectomy were performed. Intraoperative frozen-section histopathology suggested a diagnosis of mucinous adenocarcinoma; therefore, partial omentectomy and pelvic lymphadenectomy were also performed. Permanent-section histopathology led to a final diagnosis of strumal carcinoid of the ovary, stage IA (FIGO 2014). Six years post-operation, the patient had no sign of recurrence

    Pathophysiology of Tumor Neovascularization

    Get PDF
    Neovascularization is essential to the process of development and differentiation of tissues in the vertebrate embryo, and is also involved in a wide variety of physiological and pathological conditions in adults, including wound repair, metabolic diseases, inflammation, cardiovascular disorders, and tumor progression. Thanks to cumulative studies on vasculature, new therapeutic approaches have been opened for us to some life-threatening diseases by controlling angiogenesis in the affected organs. In cancer therapy, for example, modulation of factors responsible for tumor angiogenesis may be beneficial in inhibiting of tumor progression. Several antiangiogenic approaches are currently under preclinical trial. However, the mechanisms of neovascularization in tumors are complicated and each tumor shows unique features in its vasculature, depending on tissue specificity, angiogenic micromilieu, grades and stages, host immunity, and so on. For better understanding and effective therapeutic approaches, it is important to clarify both the general mechanism of angiogenic events and the disease-specific mechanism of neovascularization. This review discusses the general features of angiogenesis under physiological and pathological conditions, mainly in tumor progression. In addition, recent topics such as contribution of the endothelial progenitor cells, tumor vasculogenic mimicry, markers for tumor-derived endothelial cells and pericytes, and angiogenic/angiostatic chemokines are summarized

    Herpes simplex virus type 1 UL14 tegument protein regulates intracellular compartmentalization of major tegument protein VP16

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Herpes simplex virus type 1 (HSV-1) has a complicated life-cycle, and its genome encodes many components that can modify the cellular environment to facilitate efficient viral replication. The protein UL14 is likely involved in viral maturation and egress (Cunningham C. et al), and it facilitates the nuclear translocation of viral capsids and the tegument protein VP16 during the immediate-early phase of infection (Yamauchi Y. et al, 2008). UL14 of herpes simplex virus type 2 exhibits multiple functions (Yamauchi Y. et al, 2001, 2002, 2003).</p> <p>Methods</p> <p>To better understand the function(s) of UL14, we generated VP16-GFP-incorporated UL14-mutant viruses with either single (K51M) or triple (R60A, R64A, E68D) amino acid substitutions in the heat shock protein (HSP)-like sequence of UL14. We observed the morphology of cells infected with UL14-null virus and amino acid-substituted UL14-mutant viruses at different time points after infection.</p> <p>Results</p> <p>UL14(3P)-VP16GFP and UL14D-VP16GFP (UL14-null) viruses caused similar defects with respect to growth kinetics, compartmentalization of tegument proteins, and cellular morphology in the late phase. Both the UL14D-VP16GFP and UL14(3P)-VP16GFP viruses led to the formation of an aggresome that incorporated some tegument proteins but did not include nuclear-egressed viral capsids.</p> <p>Conclusions</p> <p>Our findings suggest that a cluster of charged residues within the HSP-like sequence of UL14 is important for the molecular chaperone-like functions of UL14, and this activity is required for the acquisition of functionality of VP16 and UL46. In addition, UL14 likely contributes to maintaining cellular homeostasis following infection, including cytoskeletal organization. However, direct interactions between UL14 and VP16, UL46, or other cellular or viral proteins remain unclear.</p

    Herpes simplex virus induces the marked up-regulation of the zinc finger transcriptional factor INSM1, which modulates the expression and localization of the immediate early protein ICP0

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Herpes simplex viruses (HSVs) rapidly shut off macromolecular synthesis in host cells. In contrast, global microarray analyses have shown that HSV infection markedly up-regulates a number of host cell genes that may play important roles in HSV-host cell interactions. To understand the regulatory mechanisms involved, we initiated studies focusing on the zinc finger transcription factor insulinoma-associated 1 (INSM1), a host cell protein markedly up-regulated by HSV infection.</p> <p>Results</p> <p>INSM1 gene expression in HSV-1-infected normal human epidermal keratinocytes increased at least 400-fold 9 h after infection; INSM1 promoter activity was also markedly stimulated. Expression and subcellular localization of the immediate early HSV protein ICP0 was affected by INSM1 expression, and chromatin immunoprecipitation (ChIP) assays revealed binding of INSM1 to the ICP0 promoter. Moreover, the role of INSM1 in HSV-1 infection was further clarified by inhibition of HSV-1 replication by INSM1-specific siRNA.</p> <p>Conclusions</p> <p>The results suggest that INSM1 up-regulation plays a positive role in HSV-1 replication, probably by binding to the ICP0 promoter.</p

    Real-Time Observation of Hydrogen Peroxide Transport through the Oil Phase in a W/O/W Double Emulsion with Chemiluminescence Emission

    Full text link
    The evaluation of the transport rates of hydrophilic substances is important in agricultural and pharmaceutical chemistry and in the cosmetics and food-processing industries. Although there are some estimation methods focusing on the diffusion of the substances through the oil phase of the W/O/W core-shell double emulsions (oil microcapsules), all of them take several hours or days. This long-time measurement has a risk of rupture of the oil microcapsules, which causes significant errors. If it were possible to measure the transport rate of substances in the oil phase of the oil microcapsules in real time, the risk of rupture could be reduced. Here, we propose a new estimation method for the transport rates of hydrogen peroxide (H2O2) in the oil phase of an oil microcapsule for real-time estimation by means of chemiluminescence (CL) emission of the luminol reaction. We theoretically give the relationship among the CL emission intensity, diffusion coefficient, microcapsule size, and experimental time and successfully estimate the diffusion coefficient of H2O2 in the oil phase of the oil microcapsule from the experimental data. Moreover, we discuss the dependence of the permeation of H2O2 through the oil phase on the concentration of the oil-soluble surfactant; the difference in the permeation rate is likely to be attributed not to the diffusion coefficient but to the partition coefficient of H2O2 in the oil microcapsule.Hiroshi Kouno, Yosuke Iwai, Yoshiaki Uchida et al. Real-Time Observation of Hydrogen Peroxide Transport through the Oil Phase in a W/O/W Double Emulsion with Chemiluminescence Emission. Langmuir, 33 (15), 3802-3808, April 17, © 2017 American Chemical Society. https://doi.org/10.1021/acs.langmuir.7b0010
    corecore