39 research outputs found

    Low-level laser therapy for spinal cord injury in rats: effects of polarization

    Get PDF
    Abstract. The effects of laser polarization on the efficacy of near-infrared low-level laser therapy for spinal cord injury (SCI) are presented. Rat spinal cords were injured with a weight-drop device, and the lesion sites were directly irradiated with a linearly polarized 808-nm diode laser positioned either perpendicular or parallel to the spine immediately after the injury and daily for five consecutive days. Functional recovery was assessed daily by an open-field test. Regardless of the polarization direction, functional scores of SCI rats that were treated with the 808-nm laser irradiation were significantly higher than those of SCI alone group (Group 1) from day 5 after injury. The locomotive function of SCI rats irradiated parallel to the spinal column (Group 3) was significantly improved from day 10 after injury, compared to SCI rats treated with the linear polarization perpendicular to the spinal column (Group 2). There were no significant differences in ATP contents in the injured tissue among the three groups. We speculate that the higher efficacy with parallel irradiation is attributable to the deeper light penetration into tissue with anisotropic scattering

    Multivariate analysis of risk factors for QT prolongation following subarachnoid hemorrhage

    Get PDF
    BACKGROUND: Subarachnoid hemorrhage (SAH) often causes a prolongation of the corrected QT (QTc) interval during the acute phase. The aim of the present study was to examine independent risk factors for QTc prolongation in patients with SAH by means of multivariate analysis. METHOD: We studied 100 patients who were admitted within 24 hours after onset of SAH. Standard 12-lead electrocardiography (ECG) was performed immediately after admission. QT intervals were measured from the ECG and were corrected for heart rate using the Bazett formula. We measured serum levels of sodium, potassium, calcium, adrenaline (epinephrine), noradrenaline (norepinephrine), dopamine, antidiuretic hormone, and glucose. RESULTS: The average QTc interval was 466 ± 46 ms. Patients were categorized into two groups based on the QTc interval, with a cutoff line of 470 ms. Univariate analyses showed significant relations between categories of QTc interval, and sex and serum concentrations of potassium, calcium, or glucose. Multivariate analyses showed that female sex and hypokalemia were independent risk factors for severe QTc prolongation. Hypokalemia (<3.5 mmol/l) was associated with a relative risk of 4.53 for severe QTc prolongation as compared with normokalemia, while the relative risk associated with female sex was 4.45 as compared with male sex. There was a significant inverse correlation between serum potassium levels and QTc intervals among female patients. CONCLUSION: These findings suggest that female sex and hypokalemia are independent risk factors for severe QTc prolongation in patients with SAH

    Improved brain MRI indices in the acute brain stem infarct sites treated with hydroxyl radical scavengers, Edaravone and hydrogen, as compared to Edaravone alone. A non-controlled study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In acute stage of cerebral infarction, MRI indices (rDWI & rADC) deteriorate during the first 3-7 days after the ictus and then gradually normalize in approximately 10 days (pseudonormalization time), although the tissue is already infarcted. Since effective treatments improve these indices significantly and in less than the natural pseudonormalization time, a combined analysis of these changes provides an opportunity for objective evaluation on the effectiveness of various treatments for cerebral infarction. Hydroxyl radicals are highly destructive to the tissue and aggravate cerebral infarction. We treated brainstem infarction patients in acute stage with hydroxyl radical scavengers (Edaravone and hydrogen) by intravenous administration and evaluated the effects of the treatment by a serial observation and analysis of these MRI indices. The effects of the treatment were evaluated and compared in two groups, an Edaravone alone group and a combined group with Edaravone and hydrogen, in order to assess beneficial effects of addition of hydrogen.</p> <p>Methods</p> <p>The patients were divided in Edaravone only group (E group. 26 patients) and combined treatment group with Edaravone and hydrogen enriched saline (EH group. 8 patients). The extent of the initial hump of rDWI, the initial dip of rADC and pseudo-normalization time were determined in each patient serially and averages of these data were compared in these two groups and also with the natural course in the literatures.</p> <p>Results</p> <p>The initial hump of rDWI reached 2.0 in the E group which was better than 2.5 of the natural course but was not as good as 1.5 of the EH group. The initial dip of rADC was 0.6 in the E group which was close to the natural course but worse than 0.8 of the EH group. Pseudonormalization time of rDWI and rADC was 9 days only in EH group but longer in other groups. Addition of hydrogen caused no side effects.</p> <p>Conclusions</p> <p>Administration of hydroxyl radical scavengers in acute stage of brainstem infarction improved MRI indices against the natural course. The effects were more obvious and significant in the EH group. These findings may imply the need for more frequent daily administration of hydroxyl scavenger, or possible additional hydrogen effects on scavenger mechanisms.</p

    Letter to the Editor: Safe entry point

    No full text

    Photomechanical wave-driven delivery of siRNAs targeting intermediate filament proteins promotes functional recovery after spinal cord injury in rats.

    Get PDF
    The formation of glial scars after spinal cord injury (SCI) is one of the factors inhibiting axonal regeneration. Glial scars are mainly composed of reactive astrocytes overexpressing intermediate filament (IF) proteins such as glial fibrillary acidic protein (GFAP) and vimentin. In the current study, we delivered small interfering RNAs (siRNAs) targeting these IF proteins to SCI model rats using photomechanical waves (PMWs), and examined the restoration of motor function in the rats. PMWs are generated by irradiating a light-absorbing material with 532-nm nanosecond laser pulses from a Q-switched Nd:YAG laser. PMWs can site-selectively increase the permeability of the cell membrane for molecular delivery. Rat spinal cord was injured using a weight-drop device and the siRNA(s) solutions were intrathecally injected into the vicinity of the exposed SCI, to which PMWs were applied. We first confirmed the substantial uptake of fluorescence-labeled siRNA by deep glial cells; then we delivered siRNAs targeting GFAP and vimentin into the lesion. The treatment led to a significant improvement in locomotive function from five days post-injury in rats that underwent PMW-mediated siRNA delivery. This was attributable to the moderate silencing of the IF proteins and the subsequent decrease in the cavity area in the injured spinal tissue
    corecore