998 research outputs found

    Suzaku investigation into the nature of the nearest ultraluminous X-ray source, M33 X-8

    Full text link
    The X-ray spectrum of the nearest ultraluminous X-ray source, M33 X-8, obtained by Suzaku during 2010 January 11 -- 13, was closely analyzed to examine its nature. It is, by far, the only data with the highest signal statistic in 0.4 -- 10 keV range. Despite being able to reproduce the X-ray spectrum, Comptonization of the disk photons failed to give a physically meaningful solution. A modified version of the multi-color disk model, in which the dependence of the disk temperature on the radius is described as r^(-p) with p being a free parameter, can also approximate the spectrum. From this model, the innermost disk temperature and bolometric luminosity were obtained as T_in = 2.00-0.05+0.06 keV and L_disk = 1.36 x 10^39 (cos i)^(-1) ergs/s, respectively, where i is the disk inclination. A small temperature gradient of p = 0.535-0.005+0.004, together with the high disk temperature, is regarded as the signatures of the slim accretion disk model, suggesting that M33 X-8 was accreting at high mass accretion rate. With a correction factor for the slim disk taken into account, the innermost disk radius, R_in =81.9-6.5+5.9 (cos i)^(-0.5) km, corresponds to the black hole mass of M \sim 10 M_sun (cos i)^(-0.5). Accordingly, the bolometric disk luminosity is estimated to be about 80 (cos i)^(-0.5)% of the Eddington limit. A numerically calculated slim disk spectrum was found to reach a similar result. Thus, the extremely super-Eddington luminosity is not required to explain the nature of M33 X-8. This conclusion is utilized to argue for the existence of intermediate mass black holes with M > 100 M_sun radiating at the sub/trans-Eddington luminosity, among ultraluminous X-ray sources with L_disk > 10^(40) ergs/s.Comment: 10 pages, 4 figures, PASJ accepte

    Optimization by Smoothed Bandpass Calibration in Radio Spectroscopy

    Full text link
    We have developed the Smoothed Bandpass Calibration (SBC) method and the best suitable scan pattern to optimize radio spectroscopic observations. Adequate spectral smoothing is applied to the spectrum toward OFF-source blank sky adjacent to a target source direction for the purpose of bandpass correction. Because the smoothing process reduces noise, the integration time for OFF-source scans can be reduced keeping the signal-to-noise ratio. Since the smoothing is not applied to ON-source scans, the spectral resolution for line features is kept. An optimal smoothing window is determined by bandpass flatness evaluated by Spectral Allan Variance (SAV). An efficient scan pattern is designed to the OFF-source scans within the bandpass stability timescale estimated by Time-based Allan Variance (TAV). We have tested the SBC using the digital spectrometer, VESPA, on the VERA Iriki station. For the targeted noise level of 5e-4 as a ratio to the system noise, the optimal smoothing window was 32 - 60 ch in the whole bandwidth of 1024 ch, and the optimal scan pattern was designed as a sequence of 70-s ON + 10-s OFF scan pairs. The noise level with the SBC was reduced by a factor of 1.74 compared with the conventional method. The total telescope time to achieve the goal with the SBC was 400 s, which was 1/3 of 1200 s required by the conventional way. Improvement in telescope time efficiency with the SBC was calculated as 3x, 2x and 1.3x for single-beam, dual-beam, and on-the-fly (OTF) scans, respectively. The SBC works to optimize scan patterns for observations from now, and also works to improve signal-to-noise ratios of archival data if ON- and OFF-source spectra are individually recorded, though the efficiency depends on the spectral stability of the receiving system.Comment: 12 pages, 11 figures, to appear in the Publications of Astronomical Society of Japan, Vol.64, No.

    関西大学探検部 資料からみた五十年の歩み

    Get PDF

    Pacemaker implantation via femoral vein and successful arrhythmia management in an elderly patient with Fontan circulation: a case report

    Get PDF
    Background The frequency of arrhythmias increases after the Fontan operation over time; atrial tachycardia (AT) and sinus node dysfunction (SND) are frequently observed. Case summary Our patient was 63-year-old woman who underwent a lateral tunnel Fontan operation for double outlet right ventricle at age 36. She experienced paroxysmal AT for 1 year, and antiarrhythmic medication was not feasible due to symptomatic SND. Computed tomography revealed a 45 mm-sized thrombus in the high right atrium (RA). The patient had three coexisting conditions: paroxysmal AT, symptomatic SND, and the right atrial thrombus, for which total cavopulmonary connection conversion and epicardial pacemaker implantation (PMI) would have been effective; however, given her age and comorbidities, surgical treatment was considered high risk. Catheter ablation was avoided because of the right atrial thrombus. Finally, a transvenous pacemaker was implanted via the right femoral vein to avoid the right atrial thrombus and severe venous tortuosity from the left subclavian vein to the RA. After PMI, the patient was prescribed amiodarone and bisoprolol for AT suppression. Atrial tachycardia occurred once in the third month after discharge. We increased the dose of amiodarone, and she has been tachycardia-free. Discussion Transvenous PMI must be considered in cases where open thoracic surgery or catheter ablation cannot be performed. This is the first report of transvenous PMI via the right femoral vein and successful AT and SND management in an elderly Fontan patient

    Mesenchymal Stem Cells Isolated from Adipose and Other Tissues: Basic Biological Properties and Clinical Applications

    Get PDF
    Mesenchymal stem cells (MSCs) are adult stem cells that were initially isolated from bone marrow. However, subsequent research has shown that other adult tissues also contain MSCs. MSCs originate from mesenchyme, which is embryonic tissue derived from the mesoderm. These cells actively proliferate, giving rise to new cells in some tissues, but remain quiescent in others. MSCs are capable of differentiating into multiple cell types including adipocytes, chondrocytes, osteocytes, and cardiomyocytes. Isolation and induction of these cells could provide a new therapeutic tool for replacing damaged or lost adult tissues. However, the biological properties and use of stem cells in a clinical setting must be well established before significant clinical benefits are obtained. This paper summarizes data on the biological properties of MSCs and discusses current and potential clinical applications

    In-plane deformation of a triangulated surface model with metric degrees of freedom

    Full text link
    Using the canonical Monte Carlo simulation technique, we study a Regge calculus model on triangulated spherical surfaces. The discrete model is statistical mechanically defined with the variables XX, gg and ρ\rho, which denote the surface position in R3{\bf R}^3, the metric on a two-dimensional surface MM and the surface density of MM, respectively. The metric gg is defined only by using the deficit angle of the triangles in {MM}. This is in sharp contrast to the conventional Regge calculus model, where {gg} depends only on the edge length of the triangles. We find that the discrete model in this paper undergoes a phase transition between the smooth spherical phase at btoinftyb to infty and the crumpled phase at bto0b to 0, where bb is the bending rigidity. The transition is of first-order and identified with the one observed in the conventional model without the variables gg and ρ\rho. This implies that the shape transformation transition is not influenced by the metric degrees of freedom. It is also found that the model undergoes a continuous transition of in-plane deformation. This continuous transition is reflected in almost discontinuous changes of the surface area of MM and that of X(M)X(M), where the surface area of MM is conjugate to the density variable ρ\rho.Comment: 13 pages, 7 figure
    corecore