144 research outputs found
Linking neural circuits to the mechanics of animal behavior in Drosophila larval locomotion
The motions that make up animal behavior arise from the interplay between neural circuits and the mechanical parts of the body. Therefore, in order to comprehend the operational mechanisms governing behavior, it is essential to examine not only the underlying neural network but also the mechanical characteristics of the animal’s body. The locomotor system of fly larvae serves as an ideal model for pursuing this integrative approach. By virtue of diverse investigation methods encompassing connectomics analysis and quantification of locomotion kinematics, research on larval locomotion has shed light on the underlying mechanisms of animal behavior. These studies have elucidated the roles of interneurons in coordinating muscle activities within and between segments, as well as the neural circuits responsible for exploration. This review aims to provide an overview of recent research on the neuromechanics of animal locomotion in fly larvae. We also briefly review interspecific diversity in fly larval locomotion and explore the latest advancements in soft robots inspired by larval locomotion. The integrative analysis of animal behavior using fly larvae could establish a practical framework for scrutinizing the behavior of other animal species
Recent Advances in Research on the Hormone INSL3 in Male Goats
Insulin‐like factor 3 (INSL3), previously called relaxin‐like factor (RLF), is essential for testis descent during fetal development and has been implicated in the testicular and sperm functions in adult males. However, similar functions in ruminants remain largely unknown. This chapter will cover recent advancement in our understanding of INSL3 in goats. First, testicular Leydig cells were the sole source of INSL3, with INSL3 expression increasing during development. Second, INSL3 was constitutively secreted as a B–C–A single‐chain structure with full biological activity. Third, secreted INSL3 was transported into the seminiferous compartments, where its receptor RXFP2 was expressed on germ cells, thus suggesting that the intratesticular INSL3 hormone‐receptor system operates in germ cells. Fourth, functional RXFP2 enabling INSL3 to bind was also identified in the spermatozoa and suggested the existence of the extratesticular INSL3 hormone‐receptor system in the spermatozoa. Interestingly, percentages of INSL3‐binding spermatozoa were significantly reduced in the semen of subfertile bulls compared to that of fertile bulls, suggesting the potential of this system to diagnose fertility in breeding sires. These fascinating findings will give a new perspective in physiological and/or therapeutic actions of INSL3 on male reproductive processes in domestic ruminants, including goats
Synchronous multi-segmental activity between metachronal waves controls locomotion speed in Drosophila larvae
Japan Society for the Promotion of Science KAKENHI, Royal Society of Edinburgh grant 64553 Maarten F ZwartThe ability to adjust the speed of locomotion is essential for survival. In limbed animals, the frequency of locomotion is modulated primarily by changing the duration of the stance phase. The underlying neural mechanisms of this selective modulation remain an open question. Here, we report a neural circuit controlling a similarly selective adjustment of locomotion frequency in Drosophila larvae. Drosophila larvae crawl using peristaltic waves of muscle contractions. We find that larvae adjust the frequency of locomotion mostly by varying the time between consecutive contraction waves, reminiscent of limbed locomotion. A specific set of muscles, the lateral transverse (LT) muscles, co-contract in all segments during this phase, the duration of which sets the duration of the interwave phase. We identify two types of GABAergic interneurons in the LT neural network, premotor neuron A26f and its presynaptic partner A31c, which exhibit segmentally synchronized activity and control locomotor frequency by setting the amplitude and duration of LT muscle contractions. Altogether, our results reveal an inhibitory central circuit that sets the frequency of locomotion by controlling the duration of the period in between peristaltic waves. Further analysis of the descending inputs onto this circuit will help understand the higher control of this selective modulation.Publisher PDFPeer reviewe
Identification of inhibitory premotor interneurons activated at a late phase in a motor cycle during Drosophila larval locomotion
This work was supported by a MEXT/JSPS KAKENHI Grant Numbers, 22115002 (to A.N.) and 221S0003 (to A.N. and Y.I.), and 15H04255 (to A.N.). The work was also supported by Janelia Research Campus (Howard Hughes Medical Institute).Rhythmic motor patterns underlying many types of locomotion are thought to be produced by central pattern generators (CPGs). Our knowledge of how CPG networks generate motor patterns in complex nervous systems remains incomplete, despite decades of work in a variety of model organisms. Substrate borne locomotion in Drosophila larvae is driven by waves of muscular contraction that propagate through multiple body segments. We use the motor circuitry underlying crawling in larval Drosophila as a model to try to understand how segmentally coordinated rhythmic motor patterns are generated. Whereas muscles, motoneurons and sensory neurons have been well investigated in this system, far less is known about the identities and function of interneurons. Our recent study identified a class of glutamatergic premotor interneurons, PMSIs (period-positive median segmental interneurons), that regulate the speed of locomotion. Here, we report on the identification of a distinct class of glutamatergic premotor interneurons called Glutamatergic Ventro-Lateral Interneurons (GVLIs). We used calcium imaging to search for interneurons that show rhythmic activity and identified GVLIs as interneurons showing wave-like activity during peristalsis. Paired GVLIs were present in each abdominal segment A1-A7 and locally extended an axon towards a dorsal neuropile region, where they formed GRASP-positive putative synaptic contacts with motoneurons. The interneurons expressed vesicular glutamate transporter (vGluT) and thus likely secrete glutamate, a neurotransmitter known to inhibit motoneurons. These anatomical results suggest that GVLIs are premotor interneurons that locally inhibit motoneurons in the same segment. Consistent with this, optogenetic activation of GVLIs with the red-shifted channelrhodopsin, CsChrimson ceased ongoing peristalsis in crawling larvae. Simultaneous calcium imaging of the activity of GVLIs and motoneurons showed that GVLIs' wave-like activity lagged behind that of motoneurons by several segments. Thus, GVLIs are activated when the front of a forward motor wave reaches the second or third anterior segment. We propose that GVLIs are part of the feedback inhibition system that terminates motor activity once the front of the motor wave proceeds to anterior segments.Publisher PDFPeer reviewe
A circuit mechanism for the propagation of waves of muscle contraction in Drosophila.
Animals move by adaptively coordinating the sequential activation of muscles. The circuit mechanisms underlying coordinated locomotion are poorly understood. Here, we report on a novel circuit for the propagation of waves of muscle contraction, using the peristaltic locomotion of Drosophila larvae as a model system. We found an intersegmental chain of synaptically connected neurons, alternating excitatory and inhibitory, necessary for wave propagation and active in phase with the wave. The excitatory neurons (A27h) are premotor and necessary only for forward locomotion, and are modulated by stretch receptors and descending inputs. The inhibitory neurons (GDL) are necessary for both forward and backward locomotion, suggestive of different yet coupled central pattern generators, and its inhibition is necessary for wave propagation. The circuit structure and functional imaging indicated that the commands to contract one segment promote the relaxation of the next segment, revealing a mechanism for wave propagation in peristaltic locomotion.We thank the Fly EM Project Team at HHMI Janelia for the gift of the EM volume, the HHMI visa office, and HHMI Janelia for funding.This is the final version of the article. It first appeared from eLife via http://dx.doi.org/10.7554/eLife.1325
A circuit mechanism for the propagation of waves of muscle contraction in Drosophila
Animals move by adaptively coordinating the sequential activation of muscles. The circuit mechanisms underlying coordinated locomotion are poorly understood. Here, we report on a novel circuit for the propagation of waves of muscle contraction, using the peristaltic locomotion of Drosophila larvae as a model system. We found an intersegmental chain of synaptically connected neurons, alternating excitatory and inhibitory, necessary for wave propagation and active in phase with the wave. The excitatory neurons (A27h) are premotor and necessary only for forward locomotion, and are modulated by stretch receptors and descending inputs. The inhibitory neurons (GDL) are necessary for both forward and backward locomotion, suggestive of different yet coupled central pattern generators, and its inhibition is necessary for wave propagation. The circuit structure and functional imaging indicated that the commands to contract one segment promote the relaxation of the next segment, revealing a mechanism for wave propagation in peristaltic locomotion.Publisher PDFPeer reviewe
Recommended from our members
Regulation of forward and backward locomotion through intersegmental feedback circuits in Drosophila larvae
Abstract: Animal locomotion requires spatiotemporally coordinated contraction of muscles throughout the body. Here, we investigate how contractions of antagonistic groups of muscles are intersegmentally coordinated during bidirectional crawling of Drosophila larvae. We identify two pairs of higher-order premotor excitatory interneurons present in each abdominal neuromere that intersegmentally provide feedback to the adjacent neuromere during motor propagation. The two feedback neuron pairs are differentially active during either forward or backward locomotion but commonly target a group of premotor interneurons that together provide excitatory inputs to transverse muscles and inhibitory inputs to the antagonistic longitudinal muscles. Inhibition of either feedback neuron pair compromises contraction of transverse muscles in a direction-specific manner. Our results suggest that the intersegmental feedback neurons coordinate contraction of synergistic muscles by acting as delay circuits representing the phase lag between segments. The identified circuit architecture also shows how bidirectional motor networks could be economically embedded in the nervous system
Immunohistochemical studies on synapse formation by embryonic cerebellar tissue transplanted into the cerebellum of the weaver mutant mouse
Normal cerebellar tissue, obtained from 15-day-old CBA/JNCij mouse embryos, was transplanted into the cerebellum of 4-week-old weaver mice. At the 6th week after the transplantation, the grafted tissue was distinguishable from the host cerebellum, developing a trilaminar organization. The formation of synapses by the implanted granule cells was analyzed immunohistochemically with antiserum against synaptic vesicle protein, Synapsin I. Some areas in the host cerebellum as well as in the grafted tissue were intensely stained by anti-Synapsin I serum, suggesting that the implanted granule cells make synaptic contacts with the neuronal cells.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/26607/1/0000148.pd
Recommendations related to the analytical equivalence assessment of gene panel testing
Advances in cancer genome care over the past few years have included the development of gene panel testing for various biomarkers. This article summarizes issues and provides recommendations related to analytical performance evaluations for new oncology gene panels. The scope of these recommendations includes comprehensive genomic profiling assays related to gene panel testing that uses histological or serum specimens to detect gene mutations. As a research project of the Japan Agency for Medical Research and Development Research on Regulatory Science of Pharmaceuticals and Medical Devices, we convened the working group committee that consisted of more than 30 experts from academia, industry, and government. We have discussed the points that should be considered to allow maximal simplification of assessments using clinical specimens in evaluating accuracy and limit of detection in equivalence and analytical performance for three years. We provide recommendations specific to each type of gene mutation as well as to reference standards or specimens used for evaluations. In addition, in order to facilitate the discussion on the analytical performance of gene panel tests by multidisciplinary tumor boards of hospitals, the present recommendations also describe the items that companies are expected to provide information on in their packaging inserts and reports, and the items that are expected to be discussed by multidisciplinary tumor boards. Our working group document will be important for participants in multidisciplinary tumor boards including medical oncologists and genome scientists, and developers of gene panels not only in Japan but also in other countries
Expression and localization of RLF/ INSL3 receptor RXFP2 in boar testes
This study investigated the possibility of the presence of specific receptor for relaxin-like factor (RLF)/insulin-like peptide 3 (INSL3) in boar testes. While RLF/INSL3 was produced by Leydig cells in the boar testis, its own receptor RXFP2 was expressed mainly in meiotic and post-meiotic germ cells, but not in Leydig cells, suggesting the existence of RLF/INSL3–RXFP2 signaling in germ cells of boars
- …