86 research outputs found
Expression of tryptophan 2,3-dioxygenase in mature granule cells of the adult mouse dentate gyrus
New granule cells are continuously generated in the dentate gyrus of the adult hippocampus. During granule cell maturation, the mechanisms that differentiate new cells not only describe the degree of cell differentiation, but also crucially regulate the progression of cell differentiation. Here, we describe a gene, tryptophan 2,3-dioxygenase (TDO), whose expression distinguishes stem cells from more differentiated cells among the granule cells of the adult mouse dentate gyrus. The use of markers for proliferation, neural progenitors, and immature and mature granule cells indicated that TDO was expressed in mature cells and in some immature cells. In mice heterozygous for the alpha-isoform of calcium/calmodulin-dependent protein kinase II, in which dentate gyrus granule cells fail to mature normally, TDO immunoreactivity was substantially downregulated in the dentate gyrus granule cells. Moreover, a 5-bromo-2'-deoxyuridine labeling experiment revealed that new neurons began to express TDO between 2 and 4 wk after the neurons were generated, when the axons and dendrites of the granule cells developed and synaptogenesis occurred. These findings indicate that TDO might be required at a late-stage of granule cell development, such as during axonal and dendritic growth, synaptogenesis and its maturation
SUBSTITUTION OF HIGH-PRESSURE CHARGE BY ELECTROLYSIS CHARGE AND HYDROGEN ENVIRONMENT EMBRITTLEMENT SUSCEPTIBILITIES FOR INCONEL 625 AND SUS 316L
Fracture strain in Inconel 625 decreases as hydrogen content charged by electrolysis increases, whereas that in SUS 316L does not change regardless of the hydrogen content of 161.5 mass ppm. Grain boundary fracture is observed on the surface of Inconel 625 absorbing a hydrogen content of 27.5 mass ppm, which corresponds to 59.2 MPa hydrogen gas at R.T using Sieverts law. In contrast, the fracture surfaces of SUS 316L hydrogen-charged at extremely high fugacities remain ductile dimples. Thus, hydrogen degradation susceptibility is much lower for SUS 316L than for Inconel 625
Factors that contribute to long-term survival in patients with leukemia not in remission at allogeneic hematopoietic cell transplantation
<p>Abstract</p> <p>Background</p> <p>There has been insufficient examination of the factors affecting long-term survival of more than 5 years in patients with leukemia that is not in remission at transplantation.</p> <p>Method</p> <p>We retrospectively analyzed leukemia not in remission at allogeneic hematopoietic cell transplantation (allo-HCT) performed at our institution between January 1999 and July 2009. Forty-two patients with a median age of 39 years received intensified conditioning (n = 9), standard (n = 12) or reduced-intensity conditioning (n = 21) for allo-HCT. Fourteen patients received individual chemotherapy for cytoreduction during the three weeks prior to reduced-intensity conditioning. Diagnoses comprised acute leukemia (n = 29), chronic myeloid leukemia-accelerated phase (n = 2), myelodysplastic syndrome/acute myeloid leukemia (MDS/AML) (n = 10) and plasma cell leukemia (n = 1). In those with acute leukemia, cytogenetic abnormalities were intermediate (44%) or poor (56%). The median number of blast cells in bone marrow (BM) was 26.0% (range; 0.2-100) before the start of chemotherapy for allo-HCT. Six patients had leukemic involvement of the central nervous system. Stem cell sources were related BM (7%), related peripheral blood (31%), unrelated BM (48%) and unrelated cord blood (CB) (14%).</p> <p>Results</p> <p>Engraftment was achieved in 33 (79%) of 42 patients. Median time to engraftment was 17 days (range: 9-32). At five years, the cumulative probabilities of acute graft-versus-host disease (GVHD) and chronic GVHD were 63% and 37%, respectively. With a median follow-up of 85 months for surviving patients, the five-year Kaplan-Meier estimates of leukemia-free survival rate and overall survival (OS) were 17% and 19%, respectively. At five years, the cumulative probability of non-relapse mortality was 38%. In the univariable analyses of the influence of pre-transplant variables on OS, poor-risk cytogenetics, number of BM blasts (>26%), MDS overt AML and CB as stem cell source were significantly associated with worse prognosis (p = .03, p = .01, p = .02 and p < .001, respectively). In addition, based on a landmark analysis at 6 months post-transplant, the five-year Kaplan-Meier estimates of OS in patients with and without prior history of chronic GVHD were 64% and 17% (p = .022), respectively.</p> <p>Conclusion</p> <p>Graft-versus-leukemia effects possibly mediated by chronic GVHD may have played a crucial role in long-term survival in, or cure of active leukemia.</p
合併症を有するB型大動脈解離に対するステントグラフト内挿術における腎動脈に対する治療戦略 : 多施設共同研究
Background: Management of abdominal branches associated with Stanford type B aortic dissection is controversial without definite criteria for therapy after thoracic endovascular aortic repair (TEVAR). This is in part due to lack of data on natural history related to branch vessels and their relationship with the dissection flap, true lumen, and false lumen. Purpose: To investigate the natural history of abdominal branches after TEVAR for type B aortic dissection and the relationship between renal artery anatomy and renal volume as a surrogate measure of perfusion. Materials and Methods: This study included patients who underwent TEVAR for complicated type B dissection from January 2012 to March 2017 at 20 centers. Abdominal aortic branches were classified with following features: patency, branch vessel origin, and presence of extension of the aortic dissection into a branch (pattern 1, supplied by the true lumen without branch dissection; pattern 2, supplied by the true lumen with branch dissection, etc). The branch artery patterns before TEVAR were compared with those of the last follow-up CT (mean interval, 19.7 months) for spontaneous healing. Patients with one kidney supplied by pattern 1 and the other kidney by a different pattern were identified, and kidney volumes over the course were compared by using a simple linear regression model. Results: Two hundred nine patients (mean age ± standard deviation, 66 years ± 13; 165 men and 44 women; median follow-up, 18 months) were included. Four hundred fifty-nine abdominal branches at the last follow-up were evaluable. Spontaneous healing of the dissected branch occurred in 63% (64 of 102) of pattern 2 branches. Regarding the other patterns, 6.5% (six of 93) of branches achieved spontaneous healing. In 79 patients, renal volumes decreased in kidneys with pattern 2 branches with more than 50% stenosis and branches supplied by the aortic false lumen (patterns 3 and 4) compared with contralateral kidneys supplied by pattern 1 (pattern 2 vs pattern 1: −16% ± 16 vs 0.10% ± 11, P = .002; patterns 3 and 4 vs pattern 1: −13% ± 14 vs 8.5% ± 14, P = .004). Conclusion: Spontaneous healing occurs more frequently in dissected branches arising from the true lumen than in other branch patterns. Renal artery branches supplied by the aortic false lumen or a persistently dissected artery with greater than 50% stenosis are associated with significantly greater kidney volume loss.博士(医学)・乙第1461号・令和2年6月30日Copyright © 2019 by authors and RSNA. This work is licensed under the Creative Commons Attribution International License (CC BY-NC-ND 4.0). https://creativecommons.org/licenses/by-nc-nd/4.0/
DOCK2 is involved in the host genetics and biology of severe COVID-19
「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force
「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection
Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector
A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements
- …