14,720 research outputs found
Geometry and Conductance of Al Wires Suspended between Semi-Infinite Crystalline Electrodes
We present a first-principles study of a coherent relationship between the
optimized geometry and conductance of a three-aluminum-atom wire during its
elongation process. Our simulation employs the most definite model including
semi-infinite crystalline electrodes using the overbridging boundary-matching
method [Phys. Rev. B {\bf 67}, 195315 (2003)] extended to incorporate nonlocal
pseudopotentials. The results that the conductance of the wire is 1
G and the conductance trace as a function of electrode spacing shows a
convex downward curve before breaking are in agreement with experimental data.Comment: 5 pages and 3 figure
Thin-film piezoelectric impact sensor array fabricated on a Si slider for measuring head-disk interaction
A new type of Acoustic Emission sensor using a thin film piezoelectric material (sputtered ZnO) was developed for measuring head-disk interaction in a rigid magnetic disk system. The sensor is mounted on a Si slider (length: 3 mm) and was fabricated using micro-machining techniques in our on-going efforts to downsize sliders. Some fundamental tests of the sensor were conducted: sensitivity and frequency characteristics, and a flying test over a rotating bump disk
A Model for Patchy Reconnection in Three Dimensions
We show, theoretically and via MHD simulations, how a short burst of
reconnection localized in three dimensions on a one-dimensional current sheet
creates a pair of reconnected flux tubes. We focus on the post-reconnection
evolution of these flux tubes, studying their velocities and shapes. We find
that slow-mode shocks propagate along these reconnected flux tubes, releasing
magnetic energy as in steady-state Petschek reconnection. The geometry of these
three-dimensional shocks, however, differs dramatically from the classical
two-dimensional geometry. They propagate along the flux tube legs in four
isolated fronts, whereas in the two-dimensional Petschek model, they form a
continuous, stationary pair of V-shaped fronts.
We find that the cross sections of these reconnected flux tubes appear as
teardrop shaped bundles of flux propagating away from the reconnection site.
Based on this, we argue that the descending coronal voids seen by Yohkoh SXT,
LASCO, and TRACE are reconnected flux tubes descending from a flare site in the
high corona, for example after a coronal mass ejection. In this model, these
flux tubes would then settle into equilibrium in the low corona, forming an
arcade of post-flare coronal loops.Comment: 27 pages plus 16 figure
Piezoelectric impact force sensor array for tribological research on rigid disk storage media
This paper presents a method to measure impact forces on a surface by means of a piezoelectric thin film sensor array. The output signals of the sensor array provide information about the position, magnitude and wave form of the impact force. The sensor array may be used for tribological studies to the slider disk interface of a rigid disk storage device. In such a device a slider head assembly is flying above the rotating disk with a typical spacing of 100nm. Possible mechanical interactions between the slider and the disk are expected to produce impact forces in the order of 0.1N with a frequency range from 100kHz to 100MHz [1]
Quasiharmonic elastic constants corrected for deviatoric thermal stresses
The quasiharmonic approximation (QHA), in its simplest form also called the
statically constrained (SC) QHA, has been shown to be a straightforward method
to compute thermoelastic properties of crystals. Recently we showed that for
non-cubic solids SC-QHA calculations develop deviatoric thermal stresses at
high temperatures. Relaxation of these stresses leads to a series of
corrections to the free energy that may be taken to any desired order, up to
self-consistency. Here we show how to correct the elastic constants obtained
using the SC-QHA. We exemplify the procedure by correcting to first order the
elastic constants of MgSiO-perovskite and MgSiO-post-perovskite, the
major phases of the Earth's lower mantle. We show that this first order
correction is quite satisfactory for obtaining the aggregated elastic averages
of these minerals and their velocities in the lower mantle. This type of
correction is also shown to be applicable to experimental measurements of
elastic constants in situations where deviatoric stresses can develop, such as
in diamond anvil cells.Comment: 4 figures, 1 table, submitted to Phys. Rev. B, July 200
- …
