30 research outputs found

    Metal Preferences of Zinc-Binding Motif on Metalloproteases

    Get PDF
    Almost all naturally occurring metalloproteases are monozinc enzymes. The zinc in any number of zinc metalloproteases has been substituted by some other divalent cation. Almost all Co(II)- or Mn(II)-substituted enzymes maintain the catalytic activity of their zinc counterparts. However, in the case of Cu(II) substitution of zinc proteases, a great number of enzymes are not active, for example, thermolysin, carboxypeptidase A, endopeptidase from Lactococcus lactis, or aminopeptidase B, while some do have catalytic activity, for example, astacin (37%) and DPP III (100%). Based on structural studies of various metal-substituted enzymes, for example, thermolysin, astacin, aminopeptidase B, dipeptidyl peptidase (DPP) III, and del-DPP III, the metal coordination geometries of both active and inactive Cu(II)-substituted enzymes are shown to be the same as those of the wild-type Zn(II) enzymes. Therefore, the enzyme activity of a copper-ion-substituted zinc metalloprotease may depend on the flexibility of catalytic domain

    In rat dipeptidyl peptidase III, His⁵⁶⁸ is essential for catalysis, and Glu⁵⁰⁷ or Glu⁵¹² stabilizes the coordination bond between His⁴⁵⁵ or His⁴⁵⁰ and zinc ion.

    Get PDF
    Dipeptidyl peptidase (DPP) III is a zinc-dependent exopeptidase that has a unique motif, "HELLGH," as the zinc-binding site. In the present study, a three-dimensional (3D) model of rat DPP III was generated with the X-ray crystal structure of human DPP III (PDB: 3FVY [Dobrovetsky E. et al. (2009) SGC]) as a template. The replacement of the seven charged amino acid residues with a hydrophobic amino acid around the zinc ion did not cause any significant changes in K(m) values or in the substrate specificity. However, the k(cat) values of H568R and H568Y were remarkably reduced, by factors of 50 and 400, respectively. The His⁵⁶⁸ residue of rat DPP III is essential for enzyme catalysis. The k(cat) values of the mutants E507A and E512A were 2.38 and 3.88 s⁻¹ toward Arg-Arg-NA, and 0.097 and 0.59 s⁻¹ toward Phe-Arg-NA, respectively. These values were markedly lower than those of the wild-type DPP III. Furthermore, the zinc contents of E507A and E512A were 0.29 and 0.08 atom per mol of protein, respectively, and those mutations caused remarkable increases in the dissociation constants of the zinc ions from DPP III by factors of 5 x 10³ to 2 x 10⁴. The 3D model of the catalytic domain of rat DPP III showed that the carboxyl oxygen atoms of Glu⁵⁰⁷ and Glu⁵¹² form the hydrogen bonds to the nitrogen atoms of His⁴⁵⁵ and His⁴⁵⁰. All of these results showed that Glu⁵⁰⁷ or Glu⁵¹² stabilizes the coordination bond between the zinc ion and His⁴⁵⁵ or His⁴⁵⁰.Dipeptidyl peptidase (DPP) III is a zinc-dependent exopeptidase that has a unique motif, "HELLGH," as the zinc-binding site. In the present study, a three-dimensional (3D) model of rat DPP III was generated with the X-ray crystal structure of human DPP III (PDB: 3FVY [Dobrovetsky E. et al. (2009) SGC]) as a template. The replacement of the seven charged amino acid residues with a hydrophobic amino acid around the zinc ion did not cause any significant changes in K(m) values or in the substrate specificity. However, the k(cat) values of H568R and H568Y were remarkably reduced, by factors of 50 and 400, respectively. The His⁵⁶⁸ residue of rat DPP III is essential for enzyme catalysis. The k(cat) values of the mutants E507A and E512A were 2.38 and 3.88 s⁻¹ toward Arg-Arg-NA, and 0.097 and 0.59 s⁻¹ toward Phe-Arg-NA, respectively. These values were markedly lower than those of the wild-type DPP III. Furthermore, the zinc contents of E507A and E512A were 0.29 and 0.08 atom per mol of protein, respectively, and those mutations caused remarkable increases in the dissociation constants of the zinc ions from DPP III by factors of 5 x 10³ to 2 x 10⁴. The 3D model of the catalytic domain of rat DPP III showed that the carboxyl oxygen atoms of Glu⁵⁰⁷ and Glu⁵¹² form the hydrogen bonds to the nitrogen atoms of His⁴⁵⁵ and His⁴⁵⁰. All of these results showed that Glu⁵⁰⁷ or Glu⁵¹² stabilizes the coordination bond between the zinc ion and His⁴⁵⁵ or His⁴⁵⁰

    Useful Extend-release Chitosan Tablets with High Antioxidant Activity.

    Get PDF
    The antioxidant properties of different low molecular weight (LMW) chitosans (CS1; 22 kDa, CS2; 38 kDa, CS3; 52 kDa, CS4; 81 kDa) were examined for possible use in extended-release tablets. The criteria used were the ability of the chitosans to reduce Cu2+, and hydroxyl and superoxide radicals and N-centered radicals derived from 1,1\u27-diphenyl-2-picrylhydrazyl, via the use of ESR spectrometry. CS2 showed the highest scavenging activity. CS1 and CS3, however, were much less effective and CS4 was not a viable antioxidant. The results suggest that CS2 could be useful in combating the development of oxidative stress. A series of chitosan tablets were prepared using a spray drying method and evaluated as an extended-release matrix tablet using theophylline (TPH) as a model drug. The release of TPH from the different MW chitosan tablets increased with increasing MW of the chitosan used. CS2, CS3 and CS4 showed a reasonable release activity, but CS1 showed the shortest release activity. Moreover, the CS2-TPH tablet showed the highest scavenging activity of the three chitosan tablets (CS2-CS4) using 2,2\u27-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) radicals. These results suggest that a CS2-TPH tablet could be potentially useful in an extended-release matrix tablet with a high antioxidant activity.The antioxidant properties of different low molecular weight (LMW) chitosans (CS1; 22 kDa, CS2; 38 kDa, CS3; 52 kDa, CS4; 81 kDa) were examined for possible use in extended-release tablets. The criteria used were the ability of the chitosans to reduce Cu2+, and hydroxyl and superoxide radicals and N-centered radicals derived from 1,1\u27-diphenyl-2-picrylhydrazyl, via the use of ESR spectrometry. CS2 showed the highest scavenging activity. CS1 and CS3, however, were much less effective and CS4 was not a viable antioxidant. The results suggest that CS2 could be useful in combating the development of oxidative stress. A series of chitosan tablets were prepared using a spray drying method and evaluated as an extended-release matrix tablet using theophylline (TPH) as a model drug. The release of TPH from the different MW chitosan tablets increased with increasing MW of the chitosan used. CS2, CS3 and CS4 showed a reasonable release activity, but CS1 showed the shortest release activity. Moreover, the CS2-TPH tablet showed the highest scavenging activity of the three chitosan tablets (CS2-CS4) using 2,2\u27-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) radicals. These results suggest that a CS2-TPH tablet could be potentially useful in an extended-release matrix tablet with a high antioxidant activity

    Timolol activates the enzyme activities of human carbonic anhydrase I and II.

    Get PDF
    Timolol, a beta-blocker, has been shown to be an effective ocular hypotensive agent when used alone or with carbonic anhydrase inhibitor on ocular hypertensive or open angle glaucoma patients. The effect of timolol hemihydrate on the CO(2) hydration activities of human carbonic anhydrase (HCA) I and II and their reaction mechanisms were investigated. Timolol activates the enzyme activities of HCA I and HCA II. In HCA I and II, the enzyme kinetic results clearly showed that timolol increases the value of V(max) but does not influence the value of K(m). The enzyme kinetic method showed that timolol noncompetitively activates HCA I and II activities through the formation of a ternary complex consisting of the enzyme, the substrate, and timolol. These results indicate that timolol binds apart from the narrow cavity of the active site. AutoDocking results showed that timolol binds at the entrance of the active site cavity in a region where the proton shuttle residue, His 64, of HCA I or II, is placed. The enzyme kinetic and AutoDocking results showed that timolol might weakly bind near the proton shuttle residue, His 64, to accelerate the proton transfer rate from His 64 to the buffer components. It is known that efficient activators of carbonic anhydrase possess a bulky aromatic/heterocyclic moiety and a primary/secondary amino group in their molecular structure. Timolol has a heterocyclic moiety and a secondary amino group, which are typical structures in efficient activators of carbonic anhydrase.Timolol, a beta-blocker, has been shown to be an effective ocular hypotensive agent when used alone or with carbonic anhydrase inhibitor on ocular hypertensive or open angle glaucoma patients. The effect of timolol hemihydrate on the CO(2) hydration activities of human carbonic anhydrase (HCA) I and II and their reaction mechanisms were investigated. Timolol activates the enzyme activities of HCA I and HCA II. In HCA I and II, the enzyme kinetic results clearly showed that timolol increases the value of V(max) but does not influence the value of K(m). The enzyme kinetic method showed that timolol noncompetitively activates HCA I and II activities through the formation of a ternary complex consisting of the enzyme, the substrate, and timolol. These results indicate that timolol binds apart from the narrow cavity of the active site. AutoDocking results showed that timolol binds at the entrance of the active site cavity in a region where the proton shuttle residue, His 64, of HCA I or II, is placed. The enzyme kinetic and AutoDocking results showed that timolol might weakly bind near the proton shuttle residue, His 64, to accelerate the proton transfer rate from His 64 to the buffer components. It is known that efficient activators of carbonic anhydrase possess a bulky aromatic/heterocyclic moiety and a primary/secondary amino group in their molecular structure. Timolol has a heterocyclic moiety and a secondary amino group, which are typical structures in efficient activators of carbonic anhydrase

    Flexibility of the coordination geometry around the cupric ions in Cu(II)-rat dipeptidyl peptidase III is important for the expression of enzyme activity.

    Get PDF
    Dipeptidyl peptidase III (DPP III), the zinc peptidase, has a unique helix portion in the metal-binding motif (HELLGH). The enzyme activity of the cupric derivative of rat DPP III (Cu(II)-rat DPP III) for Lys-Ala-β-NA is about 30% of that of the wild-type enzyme. On the other hand, the enzyme activity of Cu(II)-rat del-DPP III, in which Leu453 is deleted from the metal-binding motif, possesses only 1-2% of the enzyme activity of rat del-DPP III. The EPR spectra of Cu(II)-rat DPP III in the presence of various concentrations of the substrate, Lys-Ala-β-NA, changed dramatically, showing formation of the enzyme-metal-substrate complex. The EPR spectra of Cu(II)-rat del-DPP III did not change in the presence of excess Lys-Ala-β-NA. The deletion of Leu453 from the HELLGH motif of rat DPP III leads to a complete loss of flexibility in the ligand geometry around the cupric ions. Under the formation of the enzyme-metal-substrate complex, Glu451 of Cu(II)-rat DPP III is sufficiently able to approach the water molecule via a very different orientation from that of the resting state; however, Glu451 of Cu(II)-rat del-DPP III is not able to access the water molecule.Dipeptidyl peptidase III (DPP III), the zinc peptidase, has a unique helix portion in the metal-binding motif (HELLGH). The enzyme activity of the cupric derivative of rat DPP III (Cu(II)-rat DPP III) for Lys-Ala-β-NA is about 30% of that of the wild-type enzyme. On the other hand, the enzyme activity of Cu(II)-rat del-DPP III, in which Leu453 is deleted from the metal-binding motif, possesses only 1-2% of the enzyme activity of rat del-DPP III. The EPR spectra of Cu(II)-rat DPP III in the presence of various concentrations of the substrate, Lys-Ala-β-NA, changed dramatically, showing formation of the enzyme-metal-substrate complex. The EPR spectra of Cu(II)-rat del-DPP III did not change in the presence of excess Lys-Ala-β-NA. The deletion of Leu453 from the HELLGH motif of rat DPP III leads to a complete loss of flexibility in the ligand geometry around the cupric ions. Under the formation of the enzyme-metal-substrate complex, Glu451 of Cu(II)-rat DPP III is sufficiently able to approach the water molecule via a very different orientation from that of the resting state; however, Glu451 of Cu(II)-rat del-DPP III is not able to access the water molecule

    Coordination Chemical Studies on the Zinc Enzymes

    No full text
    corecore