36 research outputs found

    Peptide-assisted intracellular delivery of biomacromolecules

    Get PDF
    Intracellular delivery of biomacromolecules offers opportunities for molecular and materials design, based on an understanding of their chemical properties and their modes of cellular responses. Peptides are advantageous as a delivery tool because of their ease in functional design and synthesis. This review highlights our approaches for the intracellular delivery of biomacromolecules using peptides with distinct modes of action

    Stimulating Macropinocytosis for Intracellular Nucleic Acid and Protein Delivery: A Combined Strategy with Membrane-Lytic Peptides to Facilitate Endosomal Escape

    Get PDF
    Delivery of biomacromolecules via endocytic pathways requires the efficient accumulation of cargo molecules into endosomes, followed by their release to the cytosol. We propose a unique intracellular delivery strategy for bioactive molecules using a new potent macropinocytosis-inducing peptide derived from stromal-derived factor 1α (SN21). This peptide allowed extracellular materials to enter cells through the activation of macropinocytosis. To provide the ability to release internalized cargoes from endosomes, we conjugated SN21 with membrane-lytic peptides. The combination of a macropinocytosis-inducing peptide and a membrane-lytic peptide successfully delivered functional siRNA and proteins, which include antibodies, Cre recombinase, and an artificial transcription regulator protein having a transcription activator-like effector (TALE) motif. This study shows the feasibility of combining the physiological stimulation of macropinocytosis with the physicochemical disruption of endosomes as a strategy for intracellular delivery

    Quantitative Analysis of Extracellular Vesicle Uptake and Fusion with Recipient Cells

    No full text
    In precision medicine, extracellular vesicles (EVs) are promising intracellular drug delivery vehicles. The development of a quantitative analysis approach will provide valuable information from the perspective of cell biology and system design for drug delivery. Previous studies have reported quantitative methods to analyze the relative uptake or fusion of EVs to recipient cells. However, relatively few methods have enabled the simultaneous evaluation of the “number” of EVs taken up by recipient cells and those that fuse with cellular membranes. In this study, we report a simple quantitative method based on the NanoBiT system to quantify the uptake and fusion of small and large EVs (sEVs and lEVs, respectively). We assessed the abundance of these two subtypes of EVs and determined that lEVs may be more effective vehicles for transporting cargo to recipient cells. The results also indicated that both sEVs and lEVs have very low fusogenic activity, which can be improved in the presence of a fusogenic protein

    A facile combinatorial approach to construct a ratiometric fluorescent sensor: application for the real-time sensing of cellular pH changes.

    Get PDF
    Realtime monitoring of the cellular environment, such as the intracellular pH, in a defined cellular space provides a comprehensive understanding of the dynamics processes in a living cell. Considering the limitation of spatial resolution in conventional microscopy measurements, multiple types of fluorophores assembled within that space would behave as a single fluorescent probe molecule. Such a character of microscopic measurements enables a much more flexible combinatorial design strategy in developing fluorescent probes for given targets. Nanomaterials with sizes smaller than the microscopy spatial resolution provide a scaffold to assemble several types of fluorophores with a variety of optical characteristics, therefore providing a convenient strategy for designing fluorescent pH sensors. In this study, fluorescein (CF) and tetramethylrhodamine (CR) were assembled on a DNA nanostructure with controlling the number of each type of fluorophore. By taking advantage of the different responses of CF and CR emissions to the pH environment, an appropriate assembly of both CF and CR on DNA origami enabled a controlled intensity of fluorescence emission and ratiometric pH monitoring within the space defined by DNA origami. The CF and CR-assembled DNA origami was successfully applied for monitoring the intracellular pH changes

    Split luciferase-based estimation of cytosolic cargo concentration delivered intracellularly via attenuated cationic amphiphilic lytic peptides

    No full text
    Intracellular delivery of biomacromolecules is challenging as these molecules are taken up by cells and encapsulated into vesicular compartments called endosomes, and the fraction of molecules that are translocated to the cytosol are particularly important to obtain desired biological responses. This study aimed to estimate the cytosolic concentrations of intracellularly delivered peptides and proteins to aid the design of novel and effective biopharmaceutical delivery systems. To this end, we employed the split NanoLuc luciferase system, using the 11-residue HiBiT peptide segment as a probe for the delivered molecules in cells expressing the complementary LgBiT protein segment. The efficacy in cytosolic HiBiT delivery was determined by measuring the resultant luciferase activity when the HiBiT segment delivered into the cytosol forms a complex with LgBiT. Mean cytosolic HiBiT concentration was calculated using cell number and cell volume analysis. L17E and HAad peptides, developed in our laboratory for intracellular protein delivery, yielded approximately 6-fold cellular HiBiT concentrations than that obtained in their absence

    Improved cytosolic delivery of macromolecules through dimerization of attenuated lytic peptides

    No full text
    Intracellular delivery of biomacromolecules is a challenging research field in chemical biology and drug delivery. We previously reported a peptide named L17E, which successfully delivered functional proteins, including antibodies, into cells. However, relatively high concentrations of L17E and proteins are needed. In this study, we prepared dimers of L17E and its analog L17E/Q21E. Dimerization of L17E increased cytotoxicity leading to reduced intracellular delivery compared with L17E. On the other hand, the dimers of the L17E analog, L17E/Q21E, especially when tethered at the N-termini, yielded a comparable level of intracellular delivery with L17E at decreased amounts of delivery peptides and cargoes

    Piezo1 activation using Yoda1 inhibits macropinocytosis in A431 human epidermoid carcinoma cells

    Get PDF
    Macropinocytosis is a type of endocytosis accompanied by actin rearrangement-driven membrane deformation, such as lamellipodia formation and membrane ruffling, followed by the formation of large vesicles, macropinosomes. Ras-transformed cancer cells efficiently acquire exogenous amino acids for their survival through macropinocytosis. Thus, inhibition of macropinocytosis is a promising strategy for cancer therapy. To date, few specific agents that inhibit macropinocytosis have been developed. Here, focusing on the mechanosensitive ion channel Piezo1, we found that Yoda1, a Piezo1 agonist, potently inhibits macropinocytosis induced by epidermal growth factor (EGF). The inhibition of ruffle formation by Yoda1 was dependent on the extracellular Ca²⁺ influx through Piezo1 and on the activation of the calcium-activated potassium channel KCa3.1. This suggests that Ca²⁺ ions can regulate EGF-stimulated macropinocytosis. We propose the potential for macropinocytosis inhibition through the regulation of a mechanosensitive channel activity using chemical tools

    Stearylated Macropinocytosis-Inducing Peptides Facilitating the Cellular Uptake of Small Extracellular Vesicles

    No full text
    Macropinocytosis is a form of endocytosis that allows massive uptake of extracellular materials and is a promising route for intracellular delivery of biofunctional macromolecules and nanoparticles. Our laboratory developed a potent macropinocytosis-inducing peptide named P4A. However, the ability of this peptide is not apparent in the presence of serum. This study aims to endow P4A and related peptides with the ability to induce macropinocytosis in the presence of serum by N-terminal acylation with long-chain fatty acids (i.e., decanoic, myristic, and stearic acids). Stearylated P4A (stearyl-P4A) had the highest effect on stimulating macropinocytotic uptake. Moreover, the intramolecularly disulfide-bridged analogue, stearyl-oxP4A, showed an even higher ability. The effect of stearyl-oxP4A to facilitate the intracellular delivery of small extracellular vesicles (sEVs) was evaluated in terms of (i) cellular uptake using sEVs labeled with an enhanced green fluorescent protein (EGFP) and (ii) cytosolic liberation and expression of sEV-encapsulated luciferase mRNA in recipient cells. The two- to threefold uptake of both sEVs in the presence of stearyl-oxP4A suggests the potential of the peptide for sEV delivery in the presence of serum

    Grafting Hydrophobic Amino Acids Critical for Inhibition of Protein–Protein Interactions on a Cell-Penetrating Peptide Scaffold

    No full text
    Stapled peptides are a promising class of conformationally restricted peptides for modulating protein-protein interactions (PPIs). However, the low membrane permeability of these peptides is an obstacle to their therapeutic applications. It is common that only a few hydrophobic amino acid residues are mandatory for stapled peptides to bind to their target proteins. Hoping to create a novel class of membrane-permeable PPI inhibitors, the phenylalanine, tryptophan, and leucine residues that play a critical role in inhibiting the p53-HDM2 interaction were grafted into the framework of CADY2─a cell-penetrating peptide (CPP) having a helical propensity. Two analogues (CADY-3FWL and CADY-10FWL) induced apoptotic cell death but lacked the intended HDM2 interaction. Pull-down experiments followed by proteomic analysis led to the elucidation of nesprin-2 as a candidate binding target. Nesprin-2 is considered to play a role in the nuclear translocation of β-catenin upon activation of the Wnt signaling pathway, which leads to the expression of antiapoptosis proteins and cell survival. Cells treated with the two analogues showed decreased nuclear localization of β-catenin and reduced mRNA expression of related antiapoptotic proteins. These data suggest inhibition of β-catenin nuclear translocation as a possible mode of action of the described cell-penetrating stapled peptides
    corecore