105 research outputs found

    The vegetation of the Farne Islands

    Get PDF
    Not availabl

    Occurrence of an Ocean Sunfish (Mola mola) Larva in the Florida Current

    Get PDF
    During a yearlong ichthyoplankton survey conducted in the Florida Current, a single ocean sunfish, Mola mola, was found from the 284 samples and 1,454 identified specimens. This sunfish larva is one of only 17 on record from the Gulf of Mexico and northwest Atlantic

    Resilience to climate shocks in the tropics

    Get PDF
    This focus collection on resilience to climate shocks in the tropics draws together 16 papers that predominantly examine the impacts of, and responses to, the 2015/2016 El Niño-Southern Oscillation event, in a range of contexts. This introductory synthesis contextualises the collection of papers by reviewing important concepts and highlighting some important insights that emerge from the collection. The papers in this collection collectively highlight: the value of longitudinal and interdisciplinary research in understanding both the roots of, and responses to, resilience challenges; the critical interaction between climatic and land-use changes; and the ways in which governance arrangements underpin societal decision-making across a range of scales and contexts to shape resilience

    Dissipation Rate of Turbulent Kinetic Energy in Diel Vertical Migrations: Comparison of ANSYS Fluent Model to Measurements

    Get PDF
    Recent studies suggest that diel vertical migrations of zooplankton may have an impact on ocean mixing, though details are not completely clear. A strong sound scattering layer of zooplankton undergoing diel vertical migrations was observed in Saanich Inlet, British Colombia, Canada by Kunze et al. (2006). In this study, a shipboard 200- kHz echosounder was used to track vertical motion of the sound scattering layer, and microstructure profiles were collected to observe turbulence. An increase of dissipation rate of turbulent kinetic energy by four to five orders of magnitude was measured during diel vertical migrations of zooplankton in one case (but not observed during other cases). A strong sound scattering layer undergoing diel vertical migration was also observed in the Straits of Florida via a bottom mounted acoustic Doppler current profiler at 244 m isobath. A 3-D non-hydrostatic computational fluid dynamics model with Lagrangian particle injections (a proxy for migrating zooplankton) via a discrete phase model was used to simulate the effect of diel vertical migrations on the turbulence for both Saanich Inlet and the Straits of Florida. The model was initialized with idealized (but based on observation) density and velocity profiles. Particles, with buoyancy adjusted to serve as a proxy for vertically swimming zooplankton, were injected to simulate diel vertical migration cycles. Results of models run with extreme concentrations of particles showed an increase in dissipation rate of turbulent kinetic energy of approximately five orders of magnitude over background turbulence during migration of particles in both Saanich Inlet and the Straits of Florida cases (though direct relation of the turbulence produced by buoyant particles and swimming organisms isn’t straightforward). This increase was quantitatively consistent, with turbulence measurements by Kunze et al. (2006). When 10 times fewer particles were injected into the model, the effect on dissipation rate of turbulent kinetic energy was an order of magnitude smaller than that from the extreme concentration. At a concentration of particles 100 times smaller than the extreme concentration, there was no longer an observable effect. In the Straits of Florida, direct turbulence measurements were not available to make a quantitative comparison. However, a small, but statistically significant decrease in northward current velocity profiles during migration times were observed after averaging these profiles over 11 months. A small decrease of current velocity connected to the vertical migrations of particles was reproduced in the Straits of Florida model case. The deviations in the velocity profiles can be explained by the increase in turbulent mixing during vertical migration periods

    Beyond the Regional Average: Drivers of Geographical Rainfall Variability during East Africa’s Short Rains

    Get PDF
    The East African “short rains” from October–December (OND) are crucial for the region's cultural and agricultural landscape. Traditional climate studies have often treated these rains as a single mode, representing the average rainfall across the region. This approach, however, fails to capture the complex geographical variations in seasonal rainfall. In our study, we analyse 4200 reforecasts from a seasonal prediction system spanning 1981–2022, identifying distinct clusters that represent different geographical patterns of the short rains. We explore the influence of tropical sea-surface temperature patterns, upper-level tropospheric flow, and low-level moisture fluxes on these clusters. A key revelation of our research is the limited predictability of certain geographical rainfall structures based on large-scale climatic drivers. This finding highlights a gap in current forecasting methodologies, emphasising the necessity for further research to understand and predict these intricate patterns. Our study illuminates the complexities of regional rainfall variability in East Africa, underlining the importance of continued investigation to improve climate resilience strategies in the region

    Using botanic gardens and arboreta to help identify urban trees for the future

    Get PDF
    Societal Impact StatementDiversification of urban forests is essential to enhance their resilience to future biotic threats as well as those posed by a changing climate. Arboreta and botanic gardens host a wide range of plant material that can be evaluated to inform tree selection policy. This study demonstrates that plant functional traits, such as the water potential at leaf turgor loss, can be highly instructive when developing evidence-based recommendations for urban environments. However, if botanic collections are to fulfil a critical role in understanding plant response to environment, they should not be managed solely as visitor attractions but must have scientific objectives at the forefront of management policy.SummaryArboreta and botanic gardens host a multitude of species that can be utilized in research focused on improving diversity within urban forests. Higher tree species diversity will enhance the resilience of urban forests to abiotic and biotic threats and help deliver strategies that foster sustainable communities. Consequently, this study aims to demonstrate the value of botanic collections as a resource for research into tree species selection for more resilient urban landscapes. As water stress is a major constraint for trees in urban environments, understanding the drought tolerance of species is essential for urban tree selection. This study evaluates a key functional trait relating to drought tolerance. Using vapor pressure osmometry, the water potential at leaf turgor loss was evaluated for 96 species using plant material from seven botanic collections in North America and Europe. Leaf turgor loss contrasted widely in the temperate deciduous trees evaluated and, in summer, ranged from -1.7 MPa to -3.9 MPa. Significant differences in drought tolerance were also apparent across genera and closely related cultivars. Osmotic adjustment was shown to be a major physiological factor driving leaf turgor loss. A meta-analysis also demonstrated that leaf turgor loss was closely related to a drought-tolerance scale based on observations of tree performance under drought. Arboreta and botanic collections can play a vital role in the evaluation of plant material for urban environments, provided they are curated with scientific objectives at the forefront of management policy and are not managed purely as visitor attractions

    Exploring temporality in socio-ecological resilience through experiences of the 2015–16 El Niño across the Tropics

    Get PDF
    In a context of both long-term climatic changes and short-term climatic shocks, temporal dynamics profoundly influence ecosystems and societies. In low income contexts in the Tropics, where both exposure and vulnerability to climatic fluctuations is high, the frequency, duration, and trends in these fluctuations are important determinants of socio-ecological resilience. In this paper, the dynamics of six diverse socio-ecological systems (SES) across the Tropics – ranging from agricultural and horticultural systems in Africa and Oceania to managed forests in South East Asia and coastal systems in South America – are examined in relation to the 2015–16 El Niño, and the longer context of climatic variability in which this short-term ‘event’ occurred. In each case, details of the socio-ecological characteristics of the systems and the climate phenomena experienced during the El Niño event are described and reflections on the observed impacts of, and responses to it are presented. Drawing on these cases, we argue that SES resilience (or lack of) is, in part, a product of both long-term historical trends, as well as short-term shocks within this history. Political and economic lock-ins and dependencies, and the memory and social learning that originates from past experience, all contribute to contemporary system resilience. We propose that the experiences of climate shocks can provide a window of insight into future ecosystem responses and, when combined with historical perspectives and learning from multiple contexts and cases, can be an important foundation for efforts to build appropriate long-term resilience strategies to mediate impacts of changing and uncertain climates

    The role of quantitative cross-case analysis in understanding tropical smallholder farmers’ adaptive capacity to climate shocks

    Get PDF
    Climate shocks are predicted to increase in magnitude and frequency as the climate changes, notably impacting poor and vulnerable communities across the Tropics. The urgency to better understand and improve communities' resilience is reflected in international agreements such as the Paris Agreement and the multiplication of adaptation research and action programs. In turn, the need for collecting and communicating evidence on the climate resilience of communities has increasingly drawn questions concerning how to assess resilience. While empirical case studies are often used to delve into the context-specific nature of resilience, synthesizing results is essential to produce generalizable findings at the scale at which policies are designed. Yet datasets, methods and modalities that enable cross-case analyses that draw from individual local studies are still rare in climate resilience literature. We use empirical case studies on the impacts of El Niño on smallholder households from five countries to test the application of quantitative data aggregation for policy recommendation. We standardized data into an aggregated dataset to explore how key demographic factors affected the impact of climate shocks, modeled as crop loss. We find that while cross-study results partially align with the findings from the individual projects and with theory, several challenges associated with quantitative aggregation remain when examining complex, contextual and multi-dimensional concepts such as resilience. We conclude that future exercises synthesizing cross-site empirical evidence in climate resilience could accelerate research to policy impact by using mixed methods, focusing on specific landscapes or regional scales, and facilitating research through the use of shared frameworks and learning exercises
    • 

    corecore