5 research outputs found

    Instability of Massive Scalar Fields in Kerr-Newman Spacetime

    Full text link
    We investigate the instability of charged massive scalar fields in Kerr-Newman spacetime. Due to the super-radiant effect of the background geometry, the bound state of the scalar field is unstable, and its amplitude grows in time. By solving the Klein-Gordon equation of the scalar field as an eigenvalue problem, we numerically obtain the growth rate of the amplitude of the scalar field. Although the dependence of the scalar field mass and the scalar field charge on this growth rate agrees with the result of the analytic approximation, the maximum value of the growth rate is three times larger than that of the analytic approximation. We also discuss the effect of the electric charge on the instability of the scalar field.Comment: 15 pages, 10 figures. Accepted for publication in Prog.Theor.Phy

    Simulation of Acoustic Black Hole in a Laval Nozzle

    Full text link
    A numerical simulation of fluid flows in a Laval nozzle is performed to observe formations of acoustic black holes and the classical counterpart to Hawking radiation under a realistic setting of the laboratory experiment. We determined the Hawking temperature of the acoustic black hole from obtained numerical data. Some noteworthy points in analyzing the experimental data are clarified through our numerical simulation.Comment: 26 pages, published versio
    corecore