112 research outputs found

    Anatomical liver segmentectomy 2 for combined hepatocellular carcinoma and cholangiocarcinoma with tumor thrombus in segment 2 portal branch

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatic resection is the only effective treatment for combined hepatocellular carcinoma and cholangiocarcinoma.</p> <p>Case presentation</p> <p>A 52-year-old man was preoperatively diagnosed with hepatocellular carcinoma in segment 2 with tumor thrombus in the segment 2 portal branch. Anatomical liver segmentectomy 2, including separation of the hepatic arteries, portal veins, and bile duct, enabled us to remove the tumor and portal thrombus completely. Modified selective hepatic vascular exclusion, which combines extrahepatic control of the left and middle hepatic veins with occlusion of left hemihepatic inflow, was used to reduce blood loss. A pathological examination revealed combined hepatocellular carcinoma and cholangiocarcinoma with tumor thrombus in the segment 2 portal branch. No postoperative liver failure occurred, and remnant liver function was adequate.</p> <p>Conclusion</p> <p>The separation method of the hepatic arteries, portal veins, and bile duct is safe and feasible for a liver cancer patient with portal vein tumor thrombus. Modified selective hepatic vascular exclusion was useful to control bleeding during liver transection. Anatomical liver segmentectomy 2 using these procedures should be considered for a patient with a liver tumor located at segment 2 arising from a damaged liver.</p

    Selective depletion of mouse kidney proximal straight tubule cells causes acute kidney injury

    Get PDF
    The proximal straight tubule (S3 segment) of the kidney is highly susceptible to ischemia and toxic insults but has a remarkable capacity to repair its structure and function. In response to such injuries, complex processes take place to regenerate the epithelial cells of the S3 segment; however, the precise molecular mechanisms of this regeneration are still being investigated. By applying the “toxin receptor mediated cell knockout” method under the control of the S3 segment-specific promoter/enhancer, Gsl5, which drives core 2 β-1,6-N-acetylglucosaminyltransferase gene expression, we established a transgenic mouse line expressing the human diphtheria toxin (DT) receptor only in the S3 segment. The administration of DT to these transgenic mice caused the selective ablation of S3 segment cells in a dose-dependent manner, and transgenic mice exhibited polyuria containing serum albumin and subsequently developed oliguria. An increase in the concentration of blood urea nitrogen was also observed, and the peak BUN levels occurred 3–7 days after DT administration. Histological analysis revealed that the most severe injury occurred in the S3 segments of the proximal tubule, in which tubular cells were exfoliated into the tubular lumen. In addition, aquaporin 7, which is localized exclusively to the S3 segment, was diminished. These results indicate that this transgenic mouse can suffer acute kidney injury (AKI) caused by S3 segment-specific damage after DT administration. This transgenic line offers an excellent model to uncover the mechanisms of AKI and its rapid recovery

    チャクチ海における成層強度の時空間変動とその要因

    Get PDF
    第6回極域科学シンポジウム分野横断セッション:[IA] 急変する北極気候システム及びその全球的な影響の総合的解明―GRENE北極気候変動研究事業研究成果報告2015―11月19日(木) 国立極地研究所1階交流アトリウ

    Polyphosphate Synthetic Activity of Polyphosphate:AMP Phosphotransferase in Acinetobacter johnsonii 210A

    No full text
    Polyphosphate:AMP phosphotransferase (PAP) has been identified as an enzyme that catalyzes the phosphorylation of AMP with inorganic polyphosphates [poly(P)] as phosphate donors. We found that the purified PAP of Acinetobacter johnsonii 210A has poly(P) synthetic activity. The PAP catalyzes the dephosphorylation of ADP and processively synthesizes poly(P) of 200 to 700 residues. Comparatively lower concentrations of MgCl(2) (20 mM) were required to obtain optimum poly(P) synthetic activity, whereas higher concentrations of MgCl(2) (100 mM) were necessary for optimum PAP activity. ADP is preferred over GDP as a phosphate donor for poly(P) synthesis. The K(m) and V(max) values for ADP in the poly(P) synthetic activity of PAP were 8.3 mM and 55 μmol min(−1) mg(−1), respectively. We concluded that the PAP of A. johnsonii 210A is a novel type of poly(P) kinase that uses ADP and GDP as substrates
    corecore