5 research outputs found

    Agent-based simulation for reconstructing social structure by observing collective movements with special reference to single-file movement.

    No full text
    Understanding social organization is fundamental for the analysis of animal societies. In this study, animal single-file movement data-serialized order movements generated by simple bottom-up rules of collective movements-are informative and effective observations for the reconstruction of animal social structures using agent-based models. For simulation, artificial 2-dimensional spatial distributions were prepared with the simple assumption of clustered structures of a group. Animals in the group are either independent or dependent agents. Independent agents distribute spatially independently each one another, while dependent agents distribute depending on the distribution of independent agents. Artificial agent spatial distributions aim to represent clustered structures of agent locations-a coupling of "core" or "keystone" subjects and "subordinate" or "follower" subjects. Collective movements were simulated following two simple rules, 1) initiators of the movement are randomly chosen, and 2) the next moving agent is always the nearest neighbor of the last moving agents, generating "single-file movement" data. Finally, social networks were visualized, and clustered structures reconstructed using a recent major social network analysis (SNA) algorithm, the Louvain algorithm, for rapid unfolding of communities in large networks. Simulations revealed possible reconstruction of clustered social structures using relatively minor observations of single-file movement, suggesting possible application of single-file movement observations for SNA use in field investigations of wild animals

    Beneficial Effects of Combined Use of Extracorporeal Membrane Oxygenation and Hypothermic Machine Perfusion in Porcine Donors after Cardiac Death for Liver Transplantation

    No full text
    Grafts from donors after cardiac death (DCD) have greatly contributed to expanding the donor organ pool. This study aimed to determine the benefits of subnormothermic extracorporeal membrane oxygenation (ECMO) and hypothermic machine perfusion (HMP) in a porcine model of DCD liver. Female domestic crossbred Large Yorkshire and Landrace pigs weighing approximately 20 kg were used. The abdominal aorta and inferior vena cava were cannulated and connected to an ECMO circuit for in situ perfusion of the abdominal organs at 22 °C for 60 min, 45 min after cardiac death. The pigs were divided into the cold storage (CS) group (n = 3), where liver grafts were preserved at 4 °C, and the HMP group (n = 3), where liver grafts were preserved by HMP at 8–10 °C. After 4 h of preservation, liver function was evaluated using an isolated liver reperfusion model for 2 h. Although the difference was insignificant, the liver effluent enzyme levels in the HMP group were lower than those in the CS group. Furthermore, morphological findings showed fewer injured hepatocytes in the HMP group than in the CS group. The combined use of in situ subnormothermic ECMO and HMP was beneficial for the functional improvement of DCD liver grafts

    Identification of potent anti-Cryptosporidium new drug leads by screening traditional Chinese medicines.

    No full text
    Cryptosporidium spp. are gastrointestinal opportunistic protozoan parasites that infect humans, domestic animals, and wild animals all over the world. Cryptosporidiosis is the second leading infectious diarrheal disease in infants less than 5 years old. Cryptosporidiosis is a common zoonotic disease associated with diarrhea in infants and immunocompromised individuals. Consequently, cryptosporidiosis is considered a serious economic, veterinary, and medical concern. The treatment options for cryptosporidiosis are limited. To address this problem, we screened a natural product library containing 87 compounds of Traditional Chinese Medicines for anti-Cryptosporidium compounds that could serve as novel drug leads and therapeutic targets against C. parvum. To examine the anti-Cryptosporidium activity and half-maximal inhibitory doses (EC50) of these compounds, we performed in vitro assays (Cryptosporidium growth inhibition assay and host cell viability assay) and in vivo experiments in mice. In these assays, the C. parvum HNJ-1 strain was used. Four of the 87 compounds (alisol-A, alisol-B, atropine sulfate, and bufotalin) showed strong anti-Cryptosporidium activity in vitro (EC50 values = 122.9±6.7, 79.58±13.8, 253.5±30.3, and 63.43±18.7 nM, respectively), and minimum host cell cytotoxicity (cell survival > 95%). Furthermore, atropine sulfate (200 mg/kg) and bufotalin (0.1 mg/kg) also showed in vivo inhibitory effects. Our findings demonstrate that atropine sulfate and bufotalin are effective against C. parvum infection both in vitro and in vivo. These compounds may, therefore, represent promising novel anti-Cryptosporidium drug leads for future medications against cryptosporidiosis
    corecore