10 research outputs found

    Reliability of Trapezius Muscle Hardness Measurement: A Comparison between Portable Muscle Hardness Meter and Ultrasound Strain Elastography

    No full text
    Prolonged computer work and smartphone use can cause stiffness of the neck and shoulder muscles, including the trapezius muscle. Hence, muscle hardness quantification is clinically beneficial. The present study aimed to examine the reliability of trapezius muscle hardness measurement using a portable muscle hardness meter and ultrasound strain elastography. Overall, 20 healthy young men participated in this study. Prior to measurement, the participant’s subjective symptoms, particularly shoulder muscle stiffness, were rated using an 11-point verbal scale. Furthermore, hardness of the right and left upper trapezius muscles was assessed. In the strain elastography assessment, muscle hardness was evaluated using strain ratio. Results showed that, in quantifying upper trapezius muscle hardness, both portable muscle hardness meter and strain elastography had an excellent intra-tester reliability (>0.9). However, the correlation coefficients between muscle hardness values assessed using a muscle hardness meter and those evaluated with strain elastography did not significantly differ, and the scores for subjective shoulder stiffness did not correspond to muscle hardness values. Therefore, the hardness of the trapezius muscle does not directly reflect the subjective shoulder stiffness. Future studies should thoroughly examine the location of the shoulder stiffness, and check whether it is accompanied by local pain or tenderness

    Laminar flow ventilation system to prevent airborne infection during exercise in the COVID-19 crisis: A single-center observational study.

    No full text
    Particulate generation occurs during exercise-induced exhalation, and research on this topic is scarce. Moreover, infection-control measures are inadequately implemented to avoid particulate generation. A laminar airflow ventilation system (LFVS) was developed to remove respiratory droplets released during treadmill exercise. This study aimed to investigate the relationship between the number of aerosols during training on a treadmill and exercise intensity and to elucidate the effect of the LFVS on aerosol removal during anaerobic exercise. In this single-center observational study, the exercise tests were performed on a treadmill at Running Science Lab in Japan on 20 healthy subjects (age: 29±12 years, men: 80%). The subjects had a broad spectrum of aerobic capacities and fitness levels, including athletes, and had no comorbidities. All of them received no medication. The exercise intensity was increased by 1-km/h increments until the heart rate reached 85% of the expected maximum rate and then maintained for 10 min. The first 10 subjects were analyzed to examine whether exercise increased the concentration of airborne particulates in the exhaled air. For the remaining 10 subjects, the LFVS was activated during constant-load exercise to compare the number of respiratory droplets before and after LFVS use. During exercise, a steady amount of particulates before the lactate threshold (LT) was followed by a significant and gradual increase in respiratory droplets after the LT, particularly during anaerobic exercise. Furthermore, respiratory droplets ≥0.3 μm significantly decreased after using LFVS (2120800±759700 vs. 560 ± 170, p<0.001). The amount of respiratory droplets significantly increased after LT. The LFVS enabled a significant decrease in respiratory droplets during anaerobic exercise in healthy subjects. This study's findings will aid in exercising safely during this pandemic

    Realtime Monitoring of Local Sweat Rate Kinetics during Constant-Load Exercise Using Perspiration-Meter with Airflow Compensation System

    No full text
    Epidermal wearable sweat biomarker sensing technologies are likely affected by sweat rate because of the dilution effect and limited measurement methods. However, there is a dearth of reports on the local sweat rate (LSR) monitored in real-time during exercise. This explorative study investigated the feasibility of real-time LSR monitoring and clarified LSR kinetics on the forehead and upper arm during constant-load exercise using a perspiration meter with an airflow compensation system. This observational cross-sectional study included 18 recreationally trained males (mean age, 20.6 ± 0.8 years). LSR on the forehead and upper arm (mg/cm2/min) were measured during a constant-load exercise test at 25% of their pre-evaluated peak power until exhaustion. The LSR kinetics had two inflection points, with a gradual decrease in the incremental slope for each section. After the second flexion point, the LSR slope slightly decreased and was maintained until exhaustion. However, the degree of change varied among the participants. Although the ratio of forehead LSR to upper arm LSR tended to decrease gradually over time, there was little change in this ratio after a second flexion point of LSR in both. These findings suggest possible differences in LSR control between the forehead and upper arm during constant-load exercise to prolonged exhaustion

    Constant Load Pedaling Exercise Combined with Electrical Muscle Stimulation Leads to an Early Increase in Sweat Lactate Levels

    No full text
    A novel exercise modality combined with electrical muscle stimulation (EMS) has been reported to increase cardiovascular and metabolic responses, such as blood lactate concentration. We aimed to examine the effect of constant load pedaling exercise, combined with EMS, by non-invasively and continuously measuring sweat lactate levels. A total of 22 healthy young men (20.7 &plusmn; 0.8 years) performed a constant load pedaling exercise for 20 min at 125% of the pre-measured ventilatory work threshold with (EMS condition) and without (control condition) EMS stimulation. Blood lactate concentration was measured by blood samples obtained from the earlobe every minute. Sweat lactate was monitored in real time using a sensor placed on the forearm. The sweat lactate threshold (sLT) was defined as the point of increase in sweat lactate. sLT occurred significantly earlier in the EMS condition than in the control condition. In the single regression analysis, the difference in sLT between the two conditions, as the independent variable, was a significant predictor of the difference in blood lactate concentrations at the end of the exercise (p &lt; 0.05, r = &minus;0.52). Sweat lactate measurement may be a noninvasive and simple alternative to blood lactate measurement to determine the effectiveness of exercise combined with EMS

    Implications of the Onset of Sweating on the Sweat Lactate Threshold

    No full text
    The relationship between the onset of sweating (OS) and sweat lactate threshold (sLT) assessed using a novel sweat lactate sensor remains unclear. We aimed to investigate the implications of the OS on the sLT. Forty healthy men performed an incremental cycling test. We monitored the sweat lactate, blood lactate, and local sweating rates to determine the sLT, blood LT (bLT), and OS. We defined participants with the OS during the warm-up just before the incremental test as the early perspiration (EP) group and the others as the regular perspiration (RP) group. Pearson’s correlation coefficient analysis revealed that the OS was poorly correlated with the sLT, particularly in the EP group (EP group, r = 0.12; RP group, r = 0.56). Conversely, even in the EP group, the sLT was strongly correlated with the bLT (r = 0.74); this was also the case in the RP group (r = 0.61). Bland-Altman plots showed no bias between the mean sLT and bLT (mean difference: 19.3 s). Finally, in five cases with a later OS than bLT, the sLT tended to deviate from the bLT (mean difference, 106.8 s). The sLT is a noninvasive and continuous alternative to the bLT, independent of an early OS, although a late OS may negatively affect the sLT

    Anaerobic threshold using sweat lactate sensor under hypoxia

    No full text
    Abstract We aimed to investigate the reliability and validity of sweat lactate threshold (sLT) measurement based on the real-time monitoring of the transition in sweat lactate levels (sLA) under hypoxic exercise. In this cross-sectional study, 20 healthy participants who underwent exercise tests using respiratory gas analysis under hypoxia (fraction of inspired oxygen [FiO2], 15.4 ± 0.8%) in addition to normoxia (FiO2, 20.9%) were included; we simultaneously monitored sLA transition using a wearable lactate sensor. The initial significant elevation in sLA over the baseline was defined as sLT. Under hypoxia, real-time dynamic changes in sLA were successfully visualized, including a rapid, continual rise until volitionary exhaustion and a progressive reduction in the recovery phase. High intra- and inter-evaluator reliability was demonstrated for sLT’s repeat determinations (0.782 [0.607–0.898] and 0.933 [0.841–0.973]) as intraclass correlation coefficients [95% confidence interval]. sLT correlated with ventilatory threshold (VT) (r = 0.70, p < 0.01). A strong agreement was found in the Bland–Altman plot (mean difference/mean average time: − 15.5/550.8 s) under hypoxia. Our wearable device enabled continuous and real-time lactate assessment in sweat under hypoxic conditions in healthy participants with high reliability and validity, providing additional information to detect anaerobic thresholds in hypoxic conditions
    corecore