43 research outputs found

    A novel bifunctional N-acetylglutamate synthase-kinase from Xanthomonas campestris that is closely related to mammalian N-acetylglutamate synthase

    Get PDF
    BACKGROUND: In microorganisms and plants, the first two reactions of arginine biosynthesis are catalyzed by N-acetylglutamate synthase (NAGS) and N-acetylglutamate kinase (NAGK). In mammals, NAGS produces an essential activator of carbamylphosphate synthetase I, the first enzyme of the urea cycle, and no functional NAGK homolog has been found. Unlike the other urea cycle enzymes, whose bacterial counterparts could be readily identified by their sequence conservation with arginine biosynthetic enzymes, mammalian NAGS gene was very divergent, making it the last urea cycle gene to be discovered. Limited sequence similarity between E. coli NAGS and fungal NAGK suggests that bacterial and eukaryotic NAGS, and fungal NAGK arose from the fusion of genes encoding an ancestral NAGK (argB) and an acetyltransferase. However, mammalian NAGS no longer retains any NAGK catalytic activity. RESULTS: We identified a novel bifunctional N-acetylglutamate synthase and kinase (NAGS-K) in the Xanthomonadales order of gamma-proteobacteria that appears to resemble this postulated primordial fusion protein. Phylogenetic analysis indicated that xanthomonad NAGS-K is more closely related to mammalian NAGS than to other bacterial NAGS. We cloned the NAGS-K gene from Xanthomonas campestis, and characterized the recombinant NAGS-K protein. Mammalian NAGS and its bacterial homolog have similar affinities for substrates acetyl coenzyme A and glutamate as well as for their allosteric regulator arginine. CONCLUSION: The close phylogenetic relationship and similar biochemical properties of xanthomonad NAGS-K and mammalian NAGS suggest that we have identified a close relative to the bacterial antecedent of mammalian NAGS and that the enzyme from X. campestris could become a good model for mammalian NAGS in structural, biochemical and biophysical studies

    Effect of arginine on oligomerization and stability of N-acetylglutamate synthase.

    Get PDF
    N-acetylglutamate synthase (NAGS; E.C.2.3.1.1) catalyzes the formation of N-acetylglutamate (NAG) from acetyl coenzyme A and glutamate. In microorganisms and plants, NAG is the first intermediate of the L-arginine biosynthesis; in animals, NAG is an allosteric activator of carbamylphosphate synthetase I and III. In some bacteria bifunctional N-acetylglutamate synthase-kinase (NAGS-K) catalyzes the first two steps of L-arginine biosynthesis. L-arginine inhibits NAGS in bacteria, fungi, and plants and activates NAGS in mammals. L-arginine increased thermal stability of the NAGS-K from Maricaulis maris (MmNAGS-K) while it destabilized the NAGS-K from Xanthomonas campestris (XcNAGS-K). Analytical gel chromatography and ultracentrifugation indicated tetrameric structure of the MmMNAGS-K in the presence and absence of L-arginine and a tetramer-octamer equilibrium that shifted towards tetramers upon binding of L-arginine for the XcNAGS-K. Analytical gel chromatography of mouse NAGS (mNAGS) indicated either different oligomerization states that are in moderate to slow exchange with each other or deviation from the spherical shape of the mNAGS protein. The partition coefficient of the mNAGS increased in the presence of L-arginine suggesting smaller hydrodynamic radius due to change in either conformation or oligomerization. Different effects of L-arginine on oligomerization of NAGS may have implications for efforts to determine the three-dimensional structure of mammalian NAGS

    A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice

    Get PDF
    Many genetic liver diseases present in newborns with repeated, often lethal, metabolic crises. Gene therapy using non-integrating viruses such as AAV is not optimal in this setting because the non-integrating genome is lost as developing hepatocytes proliferate1,2. We reasoned that newborn liver may be an ideal setting for AAV-mediated gene correction using CRISPR/Cas9. Here we intravenously infuse two AAVs, one expressing Cas9 and the other expressing a guide RNA and the donor DNA, into newborn mice with a partial deficiency in the urea cycle disorder enzyme, ornithine transcarbamylase (OTC). This resulted in reversion of the mutation in 10% (6.7% – 20.1%) of hepatocytes and increased survival in mice challenged with a high-protein diet, which exacerbates disease. Gene correction in adult OTC-deficient mice was lower and accompanied by larger deletions that ablated residual expression from the endogenous OTC gene, leading to diminished protein tolerance and lethal hyperammonemia on a chow diet

    The criticality Index-mortality: A dynamic machine learning prediction algorithm for mortality prediction in children cared for in an ICU

    No full text
    BACKGROUND: The Criticality Index-Mortality uses physiology, therapy, and intensity of care to compute mortality risk for pediatric ICU patients. If the frequency of mortality risk computations were increased to every 3 h with model performance that could improve the assessment of severity of illness, it could be utilized to monitor patients for significant mortality risk change. OBJECTIVES: To assess the performance of a dynamic method of updating mortality risk every 3 h using the Criticality Index-Mortality methodology and identify variables that are significant contributors to mortality risk predictions. POPULATION: There were 8,399 pediatric ICU admissions with 312 (3.7%) deaths from January 1, 2018 to February 29, 2020. We randomly selected 75% of patients for training, 13% for validation, and 12% for testing. MODEL: A neural network was trained to predict hospital survival or death during or following an ICU admission. Variables included age, gender, laboratory tests, vital signs, medications categories, and mechanical ventilation variables. The neural network was calibrated to mortality risk using nonparametric logistic regression. RESULTS: Discrimination assessed across all time periods found an AUROC of 0.851 (0.841-0.862) and an AUPRC was 0.443 (0.417-0.467). When assessed for performance every 3 h, the AUROCs had a minimum value of 0.778 (0.689-0.867) and a maximum value of 0.885 (0.841,0.862); the AUPRCs had a minimum value 0.148 (0.058-0.328) and a maximum value of 0.499 (0.229-0.769). The calibration plot had an intercept of 0.011, a slope of 0.956, and the was 0.814. Comparison of observed vs. expected proportion of deaths revealed that 95.8% of the 543 risk intervals were not statistically significantly different. Construct validity assessed by death and survivor risk trajectories analyzed by mortality risk quartiles and 7 high and low risk diseases confirmed clinical expectations about the trajectories of death and survivors. CONCLUSIONS: The Criticality Index-Mortality computing mortality risk every 3 h for pediatric ICU patients has model performance that could enhance the clinical assessment of severity of illness. The overall Criticality Index-Mortality framework was effectively applied to develop an institutionally specific, and clinically relevant model for dynamic risk assessment of pediatric ICU patients
    corecore