1,213 research outputs found

    A Possible Phase Transition in beta-pyrochlore Compounds

    Full text link
    We investigate a lattice of interacting anharmonic oscillators by using a mean field theory and exact diagonalization. We construct an effective five-state hopping model with intersite repulsions as a model for beta-pyrochlore AOs_2O_6(A=K, Rb or Cs). We obtain the first order phase transition line from large to small oscillation amplitude phases as temperature decreases. We also discuss the possibility of a phase with local electric polarizations. Our theory can explain the origin of the mysterious first order transition in KOs_2O_6.Comment: 4 pages, 4 figures, submitted to J. Phys. Soc. Jp

    Phonon Dynamics and Multipolar Isomorphic Transition in beta-pyrochlore KOs2O6

    Full text link
    We investigate with a microscopic model anharmonic K-cation oscillation observed by neutron experiments in beta-pyrochlore superconductor KOs2O6, which also shows a mysterious first-order structural transition at Tp=7.5 K. We have identified a set of microscopic model parameters that successfully reproduce the observed temperature dependence and the superconducting transition temperature. Considering changes in the parameters at Tp, we can explain puzzling experimental results about electron-phonon coupling and neutron data. Our analysis demonstrates that the first-order transition is multipolar transition driven by the octupolar component of K-cation oscillations. The octupole moment does not change the symmetry and is characteristic to noncentrosymmetric K-cation potential.Comment: 5 pages, 4 figures, submitted to J. Phys. Soc. Jp

    Kagom\'{e} ice state in the dipolar spin ice Dy_{2}Ti_{2}O_{7}

    Get PDF
    We have investigated the kagom\'{e} ice behavior of the dipolar spin-ice compound Dy_{2}Ti_{2}O_{7} in magnetic field along a [111] direction using neutron scattering and Monte Carlo simulations. The spin correlations show that the kagom\'{e} ice behavior predicted for the nearest-neighbor (NN) interacting model, where the field induces dimensional reduction and spins are frustrated in each two-dimensional kagom\'{e} lattice, occurs in the dipole interacting system. The spins freeze at low temperatures within the macroscopically degenerate ground states of the NN model.Comment: 5 pages, 3 figures, submitted to PR

    Strong-Coupling Theory of Rattling-Induced Superconductivity

    Full text link
    In order to clarify the mechanism of the enhancement of superconducting transition temperature TcT_{\rm c} due to anharmonic local oscillation of a guest ion in a cage composed of host atoms, i.e., {\it rattling}, we analyze the anharmonic Holstein model by applying the Migdal-Eliashberg theory. From the evaluation of the normal-state electron-phonon coupling constant, it is found that the strong coupling state is developed, when the bottom of a potential for the guest ion becomes wide and flat. Then, TcT_{\rm c} is enhanced with the increase of the anharmonicity in the potential, although TcT_{\rm c} is rather decreased when the potential becomes a double-well type due to very strong anharmonicity. From these results, we propose a scenario of anharmonicity-controlled strong-coupling tendency for superconductivity induced by rattling. We briefly discuss possible relevance of the present scenario with superconductivity in β\beta-pyrochlore oxides.Comment: 8 pages, 6 figure

    Phase diagram and hidden order for generalized spin ladders

    Full text link
    We investigate the phase diagram of antiferromagnetic spin ladders with additional exchange interactions on diagonal bonds by variational and numerical methods. These generalized spin ladders interpolate smoothly between the S=1/2S=1/2 chain with competing nn and nnn interactions, the S=1/2S=1/2 chain with alternating exchange and the antiferromagnetic S=1S=1 chain. The Majumdar-Ghosh ground states are formulated as matrix product states and are shown to exhibit the same type of hidden order as the af S=1S=1 chain. Generalized matrix product states are used for a variational calculation of the ground state energy and the spin and string correlation functions. Numerical (Lanczos) calculations of the energies of the ground state and of the low-lying excited states are performed, and compare reasonably with the variational approach. Our results support the hypothesis that the dimer and Majumdar-Ghosh points are in the same phase as the af S=1S=1 chain.Comment: 23 pages, REVTEX, 7 figure

    Magnetic Phase Diagram of the Hole-doped Ca2x_{2-x}Nax_{x}CuO2_{2}Cl2_{2} Cuprate Superconductor

    Full text link
    We report on the magnetic phase diagram of a hole-doped cuprate Ca2x_{2-x}Nax_{x}CuO2_{2}Cl2_{2}, which is free from buckling of CuO2_2 planes, determined by muon spin rotation and relaxation. It is characterized by a quasi-static spin glass-like phase over a range of sodium concentration (0.05x0.120.05\leq x\leq 0.12), which is held between long range antiferromagnetic (AF) phase (x0.02x\leq 0.02) and superconducting phase where the system is non-magnetic for x0.15x\geq 0.15. The obtained phase diagram qualitatively agrees well with that commonly found for hole-doped high-\tc cuprates, strongly suggesting that the incomplete suppression of the AF order for x>0.02x>0.02 is an essential feature of the hole-doped cuprates.Comment: 5 pages, submitted to Phys. Rev. Let

    Effects of Rattling Phonons on the Quasiparticle Excitation and Dynamics in the Superconducting β\beta-Pyrochlore KOs2_2O6_6

    Get PDF
    Microwave penetration depth λ\lambda and surface resistance at 27 GHz are measured in high quality crystals of KOs2_2O6_6. Firm evidence for fully-gapped superconductivity is provided from λ(T)\lambda(T). Below the second transition at Tp8T_{\rm p}\sim 8 K, the superfluid density shows a step-like change with a suppression of effective critical temperature TcT_{\rm c}. Concurrently, the extracted quasiparticle scattering time shows a steep enhancement, indicating a strong coupling between the anomalous rattling motion of K ions and quasiparticles. The results imply that the rattling phonons help to enhance superconductivity, and that K sites freeze to an ordered state with long quasiparticle mean free path below TpT_{\rm p}.Comment: 5 pages, 5 figures, to be published in Phys. Rev. Let

    Role of electron-electron and electron-phonon interaction effect in the optical conductivity of VO2

    Full text link
    We have investigated the charge dynamics of VO2 by optical reflectivity measurements. Optical conductivity clearly shows a metal-insulator transition. In the metallic phase, a broad Drude-like structure is observed. On the other hand, in the insulating phase, a broad peak structure around 1.3 eV is observed. It is found that this broad structure observed in the insulating phase shows a temperature dependence. We attribute this to the electron-phonon interaction as in the photoemission spectra.Comment: 6 pages, 8 figures, accepted for publication in Phys. Rev.
    corecore