16 research outputs found

    Variation in bradyrhizobial NopP effector determines symbiotic incompatibility with Rj2-soybeans via effector-triggered immunity

    Get PDF
    The soybean Rj2 gene encodes a TIR-NBS-LRR protein that confers resistance to nodulation by certain rhizobial strains. Here, the authors show that T3SS effector NopP is an avirulence protein that is necessary for Bradyrhizobium diazoefficiens USDA 122 to trigger Rj2-dependent incompatibility

    Improved substrate specificity for D-galactose of L-arabinose isomerase for industrial application

    No full text
    【Purpose】D-Tagatose is a naturally occurring ketohexose considered to be a potential reduced-energy sweetener. For industrial application, we will modify L-arabinose isomerase (L-AI) from a thermophilic microorganism, Geobacillus stearothermophilus to improve its substrate specificity for D-galactose for the production of D-tagatose.【Method and Result】Analysis of residues around the binding pocket was conducted using molecular operating environment (MOE) software, and modification of L-AI was performed using saturation mutagenesis. Among the selected residues, mutation at residue 18 produced a mutant strain, H18T, which exhibited increased activity for D-galactose compared with the wild-type (WT) enzyme. H18T exhibited higher substrate binding and catalytic efficiency of about 2.7-fold and 1.8-fold, respectively, for D-galactose. H18T demonstrated improved substrate specificity for D-galactose by up to 45.4%.第25回日本生物工学会 九州支部鹿児島大

    Iron-Corroding Methanogen Isolated from a Crude-Oil Storage Tank ▿

    No full text
    Microbiologically influenced corrosion of steel in anaerobic environments has been attributed to hydrogenotrophic microorganisms. A sludge sample collected from the bottom plate of a crude-oil storage tank was used to inoculate a medium containing iron (Fe0) granules, which was then incubated anaerobically at 37°C under an N2-CO2 atmosphere to enrich for microorganisms capable of using iron as the sole source of electrons. A methanogen, designated strain KA1, was isolated from the enrichment culture. An analysis of its 16S rRNA gene sequence revealed that strain KA1 is a Methanococcus maripaludis strain. Strain KA1 produced methane and oxidized iron much faster than did the type strain of M. maripaludis, strain JJT, which produced methane at a rate expected from the abiotic H2 production rate from iron. Scanning electron micrographs of iron coupons that had been immersed in either a KA1 culture, a JJT culture, or an aseptic medium showed that only coupons from the KA1 culture had corroded substantially, and these were covered with crystalline deposits that consisted mainly of FeCO3

    Expression and characterization of l-arabinose isomerase from Geobacillus stearothermophilus for improved activity under acidic condition

    No full text
    A low-calorie sugar-substituting sweetener, d-tagatose, can be produced by l-arabinose isomerase (l-AI) from the substrate d-galactose. However, this process suffers from a Maillard reaction when performed at alkaline pH and high temperature. For industrial applications, therefore, a reaction under slightly acidic conditions is desirable to minimize the Maillard reaction. Previously, we obtained a mutant of l-AI, H18T, from Geobacillus stearothermophilus with greater substrate specificity. Although H18T possessed excellent thermostability, its activity under acidic conditions was not optimal. Here, we successfully obtained a potential variant of the H18T protein, H18T-Y234C, which achieved improved activity at pH 6.0, based on random mutagenesis using error-prone PCR around the binding pocket area of H18T. This double H18T-Y234C mutant possessed 1.8-fold and 3-fold higher activity at pH 6.0 than the parent H18T and the wild type, thereby broadening the optimal pH range to 6.0-8.0. Mutation from Tyr to Cys at residue 234 had little effect on the secondary structure of L-AI. Furthermore, the formation of disulfide bonds was not detected. Thus, the improvement of activity at pH 6.0 is probably caused by the change in the binding pocket area involving residue 234. This study offers insight into the importance of residue 234 in improving the activity under acidic conditions

    Improved substrate specificity for D-galactose of L-arabinose isomerase for industrial application

    No full text
    L-Arabinose isomerase isolated from Geobacillus stearothermophilus (GSAI) was modified to improve its substrate specificity for D-galactose for the production of D-tagatose, a potential reduced-energy sweetener. Among the selected residues, mutation at residue 18 produced a mutant strain, H18T, which exhibited increased activity for D-galactose compared with the wild-type (WT) enzyme. Analysis of the substrate specificity of H18T showed a 45.4% improvement for D-galactose. Replacing histidine with threonine at residue 18 resulted in approximately 2.7-fold and 1.8-fold higher substrate binding and catalytic efficiency, respectively, for D-galactose. Further enhancement of the specific activity and catalytic efficiency of H18T for D-galactose by up to 2.7-fold and 4.3- fold, respectively, was achieved by adding borate during L-arabinose isomerase catalysis. Moreover, H18T showed thermostability and no destabilization was detected, which is promising for the industrial production of D-tagatos

    Expression, Folding, and Activation of Halophilic Alkaline Phosphatase in Non-Halophilic Brevibacillus choshinensis

    No full text
    Halophilic enzymes contain a large number of acidic amino acids and marginal large hydrophobic amino acids, which make them highly soluble even under strongly hydrophobic conditions. This characteristic of halophilic enzymes provides potential for their industrial application. However, halophilic enzymes easily degrade when used for industrial applications compared with enzymes from other extremophiles because of their instability in low-salt environments. We aimed to clarify the stabilization mechanism of halophilic enzymes. We previously attempted to express halophilic alkaline phosphatase from Halomonas (HaALP) in non-halophilic E. coli. However, the expressed HaALP showed little activity. Therefore, we overexpressed HaALP in Gram-positive non-halophilic Brevibacillus choshinensis in this study, which was successfully expressed and purified in its active form. HaALP was denatured in 6 M urea, refolded using various salts and the non-ionic osmolyte trimethylamine N-oxide (TMAO), and assessed by native polyacrylamide gel electrophoresis. HaALP refolded in 3M NaCl or 3 M TMAO containing Na+ ions. Hydrophobic interactions due to a high salt concentration or TMAO enhanced the formation of the folding intermediate (the monomer precursor), and only Na+ ions activated the dimer form. This insight into the stabilization mechanism of HaALP may lead to the development of industrial applications of halophilic enzymes under low-salt conditions
    corecore