125 research outputs found

    Constraints on the Intracluster Dust Emission in the Coma Cluster of Galaxies

    Full text link
    We have undertaken a search for the infrared emission from the intracluster dust in the Coma cluster of galaxies by the Multiband Imaging Photometer for Spitzer. Our observations yield the deepest mid and far-infrared images of a galaxy cluster ever achieved. In each of the three bands, we have not detected a signature of the central excess component in contrast to the previous report on the detection by Infrared Space Observatory (ISO). We still find that the brightness ratio between 70 and 160 microns shows a marginal sign of the central excess, in qualitative agreement with the ISO result. Our analysis suggests that the excess ratio is more likely due to faint infrared sources lying on fluctuating cirrus foreground. Our observations yield the 2 sigma upper limits on the excess emission within 100 kpc of the cluster center as 5 x 10^-3 MJy/sr, 6 x 10^-2 MJy/sr, and 7 x 10^-2 MJy/sr, at 24, 70, and 160 microns, respectively. These values are in agreement with those found in other galaxy clusters and suggest that dust is deficient near the cluster center by more than 3 orders of magnitude compared to the interstellar medium.Comment: 10 pages, 9 figures, minor changes to match version published in Ap

    Subaru Observations for the K-band Luminosity Distribution of Galaxies in Clusters near to 3C 324 at z\sim1.2

    Full text link
    We investigate the KK-band luminosity distribution of galaxies in the region of clusters at z1.2z\sim1.2 near to the radio galaxy 3C 324. The imaging data were obtained during the commissioning period of the Subaru telescope. There is a significant excess of the surface number density of the galaxies with K=K = 17--20 mag in the region within \sim 40'' from 3C 324. At this bright end, the measured luminosity distribution shows a drop, which can be represented by the exponential cut off of the Schechter-function formula; the best-fitted value of the characteristic magnitude, KK^{*}, is 18.4±0.8\sim 18.4\pm0.8. This measurement follows the evolutionary trend of the KK^* of the rich clusters observed at an intermediate redshift, which is consistent with passive evolution models with a formation redshift z_f \gtsim 2. At K \gtsim 20 mag, however, the excess of the galaxy surface density in the region of the clusters decreases abruptly, which may imply that the luminosity function of the cluster galaxies has a negative slope at the faint end. This may imply strong luminosity segregation between the inner and outer parts of the clusters, or some deficit of faint galaxies in the cluster central region of the cluster.Comment: 12 pages, 9 figures, accepted for publication in PAS

    High-Resolution Near-Infrared Imaging of the Powerful Radio Galaxy 3C 324 at z = 1.21 with the Subaru Telescope

    Full text link
    We have obtained high-resolution K'-band images of the powerful z=1.206 radio galaxy 3C 324 with the Subaru telescope under seeing conditions of 0.3--0.4 arcsec. We clearly resolved the galaxy and directly compared it to the optical images obtained with the Hubble Space Telescope. The host galaxy of 3C 324 is revealed to be a moderately luminous elliptical galaxy with a smooth light profile. The effective radius of the galaxy, as determined by profile fitting, is 1.3+-0.1 arcsec (1.2 kpc), which is significantly smaller than the value of 2.2 arcsec, published in Best et al. (1998, MNRAS, 292, 758). The peak of the K'-band light coincides with the position of the radio core, which implies that the powerful AGN lies at the nucleus of the host galaxy. The peak also coincides with the gap in the optical knotty structures which may be a dust lane hiding the UV-optical emission of the AGN from our line of sight; it is very likely that we are seeing the obscuring structure almost edge-on. We clearly detected the `aligned component' in the K'-band image by subtracting a model elliptical galaxy from the observed image. The red R_F702W-K color of the outer region of the galaxy avoiding the aligned component indicates that the near infrared light of the host galaxy is dominated by an old stellar population.Comment: 21 pages (10 figures), accepted for publication in PAS

    Fe-K line probing of material around the AGN central engine with Suzaku

    Full text link
    We systematically analyzed the high-quality Suzaku data of 88 Seyfert galaxies. We obtained a clear relation between the absorption column density and the equivalent width of the 6.4 keV line above 1023^{23} cm2^{-2}, suggesting a wide-ranging column density of 102324.510^{23-24.5} cm2^{-2} with a similar solid and a Fe abundance of 0.7--1.3 solar for Seyfert 2 galaxies. The EW of the 6.4 keV line for Seyfert 1 galaxies are typically 40--120 eV, suggesting the existence of Compton-thick matter like the torus with a column density of >1023>10^{23} cm2^{-2} and a solid angle of (0.150.4)4pi(0.15-0.4)*4pi, and no difference of neutral matter is visible between Seyfert 1 and 2 galaxies. An absorber with a lower column density of 10212310^{21-23} cm2^{-2} for Compton-thin Seyfert 2 galaxies is suggested to be not a torus but an interstellar medium. These constraints can be understood by the fact that the 6.4 keV line intensity ratio against the 10--50 keV flux is almost identical within a range of 2--3 in many Seyfert galaxies. Interestingly, objects exist with a low EW, 10--30 eV, of the 6.4 keV line, suggesting that those torus subtends only a small solid angle of <0.24pi<0.2*4pi. Ionized Fe-Kα\alpha emission or absorption lines are detected from several percents of AGNs. Considering the ionization state and equivalent width, emitters and absorbers of ionized Fe-K lines can be explained by the same origin, and highly ionized matter is located at the broad line region. The rapid increase in EW of the ionized Fe-K emission lines at NH>1023N_{H}>10^{23} cm2^{-2} is found, like that of the cold material. It is found that these features seem to change for brighter objects with more than several 104410^{44} erg/s such that the Fe-K line features become weak. We discuss this feature, together with the torus structure.Comment: 32 pages, 20 figures, ApJ accepte
    corecore