76 research outputs found

    Autocrine TGF-β Signaling Maintains Tumorigenicity of Glioma-Initiating Cells through Sry-Related HMG-Box Factors

    Get PDF
    SummaryDespite aggressive surgery, radiotherapy, and chemotherapy, treatment of malignant glioma remains formidable. Although the concept of cancer stem cells reveals a new framework of cancer therapeutic strategies against malignant glioma, it remains unclear how glioma stem cells could be eradicated. Here, we demonstrate that autocrine TGF-β signaling plays an essential role in retention of stemness of glioma-initiating cells (GICs) and describe the underlying mechanism for it. TGF-β induced expression of Sox2, a stemness gene, and this induction was mediated by Sox4, a direct TGF-β target gene. Inhibitors of TGF-β signaling drastically deprived tumorigenicity of GICs by promoting their differentiation, and these effects were attenuated in GICs transduced with Sox2 or Sox4. Furthermore, GICs pretreated with TGF-β signaling inhibitor exhibited less lethal potency in intracranial transplantation assay. These results identify an essential pathway for GICs, the TGF-β-Sox4-Sox2 pathway, whose disruption would be a therapeutic strategy against gliomas

    Intraperitoneal administration of nanoparticles containing tocopheryl succinate prevents peritoneal dissemination

    Get PDF
    Intraperitoneal administration of anticancer nanoparticles is a rational strategy for preventing peritoneal dissemination of colon cancer due to the prolonged retention of nanoparticles in the abdominal cavity. However, instability of nanoparticles in body fluids causes inefficient retention, reducing its anticancer effects. We have previously developed anticancer nanoparticles containing tocopheryl succinate, which showed high in vivo stability and multifunctional anticancer effects. In the present study, we have demonstrated that peritoneal dissemination derived from colon cancer was prevented by intraperitoneal administration of tocopheryl succinate nanoparticles. The biodistribution of tocopheryl succinate nanoparticles was evaluated using inductively coupled plasma mass spectroscopy and imaging analysis in mice administered quantum dot encapsulated tocopheryl succinate nanoparticles. Intraperitoneal administration of tocopheryl succinate nanoparticles showed longer retention in the abdominal cavity than by its intravenous (i.v.) administration. Moreover, due to effective biodistribution, tumor growth was prevented by intraperitoneal administration of tocopheryl succinate nanoparticles. Furthermore, the anticancer effect was attributed to the inhibition of cancer cell proliferation and improvement of the intraperitoneal microenvironment, such as decrease in the levels of vascular endothelial growth factor A, interleukin 10, and M2-like phenotype of tumor-associated macrophages. Collectively, intraperitoneal administration of tocopheryl succinate nanoparticles is expected to have multifaceted antitumor effects against colon cancer with peritoneal dissemination

    Potential of imaging analysis in establishing skin concentration-distance profiles for topically applied FITC-dextran 4 kDa

    Get PDF
    Quantitatively determining the skin concentration-distance profiles of topically applied drugs is important for evaluating their safety and efficacy. The aim of the present study was to quantitatively visualize the distribution of hydrophilic drugs through the skin using confocal laser scanning microscopy (CLSM) in order to obtain skin concentration-distance profiles. FITC-dextran with a molecular weight of approximately 4 kDa (FD-4) was selected as the model fluorescent drug in the present study, and excised pig ear skin was used. The skin concentration of FD-4 at each depth of a skin section was assessed by imaging analysis of the intensity of fluorescence. The FD-4 skin concentration-distance profile obtained was analyzed using Fick’s second law of diffusion, and was markedly similar to that using skin permeation parameters in the skin permeation study. These results suggest that the present CLSM method may be a promising tool for quantitatively visualizing the concentration-distance profiles of drugs through the skin

    Swainsonine reduces 5-fluorouracil tolerance in the multistage resistance of colorectal cancer cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Drug resistance is a major problem in cancer chemotherapy. Acquisition of chemo-resistance not only reduces the effectiveness of drugs, but also promotes side effects and markedly reduces the patient's quality of life. However, a number of resistance mechanisms have been reported and are thought to be the reason for the difficulties in solving drug-resistance problems.</p> <p>Result</p> <p>To investigate the mechanisms of drug resistance, a set of cell lines with different levels of sensitivity and possessing different mechanisms of resistance to 5-fluorouracil (5-FU) was established from a colorectal cancer cell line. The expression of thymidylate synthase, orotic acid phosphoribosyltransferase and dihydropyrimidine dehydrogenase, which are well known to be related to drug resistance, differed among these cell lines, indicating that these cell lines acquired different resistance mechanisms. However, swainsonine, an inhibitor of N-glycan biosynthesis, reduced 5-FU-tolerance in all resistant cells, whereas the sensitivity of the parental cells was unchanged. Further analysis of the N-glycan profiles of all cell lines showed partial inhibition of biosynthesis and no cytotoxicity at the swainsonine dosage tested.</p> <p>Conclusion</p> <p>These observations suggest that N-linked oligosaccharides affect 5-FU resistance more widely than do drug-resistance related enzymes in colorectal cancer cells, and that the N-glycan could be a universal target for chemotherapy. Further, swainsonine may enhance the performance of chemotherapy by reducing tolerance.</p

    Usefulness of direct intratumoral administration of doxorubicin hydrochloride with an electro-osmosis–assisted pump

    Get PDF
    Patients receiving chemotherapy by intravenous (i.v.) or oral administration of anticancer drugs often experience side effects. In this study, an electro-osmotic flow (EO) pump was used for the direct administration of an anticancer drug with minimum side effects. Doxorubicin hydrochloride (DXR) was used as an anticancer drug, and its antitumor effect and toxicity were evaluated in comparison with i.v. administration. Balb/c female mice were subcutaneously transplanted with a breast cancer cell line (4T1/Luc) stably expressing luciferase, and 20 μL of DXR solution (1.0 mg/mL) was administered intratumorally (i.t.) at a slow rate (0.6 µL/min) using an EO pump or rapidly using a syringe. For comparison, 100 μL of DXR solution was injected through the tail vein at the same dose and a 5-times higher dose. A tumor growth inhibitory effect without significant weight loss was observed with direct i.t. administration of DXR using an EO pump. On the other hand, no suppressive tumor growth effect was observed with i.v. administration of DXR at the same dose. Although there was no significant difference in the suppression effect on tumor growth between i.t. administration with EO pump and syringe, the peripheral skin concentration of DXR were decreased after slow administration with EO pump compared with that after rapidly administration with a syringe. These results indicated that direct i.t. administration of DXR with lower dosing using an EO pump at slower administration rate may be useful for exhibiting antitumor effects and suppressing systemic side effects. In addition, the blood concentration and the peripheral skin concentration of DXR after administration at lower rate with EO pump were decreased compared with those after the rapidly administration with a syringe

    動物皮膚を介した薬物の皮膚透過性について

    No full text

    Transdermal Permeation of Drugs in Various Animal Species

    No full text
    Excised human skin is utilized for in vitro permeation experiments to evaluate the safety and effect of topically-applied drugs by measuring its skin permeation and concentration. However, ethical considerations are the major problem for using human skin to evaluate percutaneous absorption. Moreover, large variations have been found among human skin specimens as a result of differences in age, race, and anatomical donor site. Animal skins are used to predict the in vivo human penetration/permeation of topically-applied chemicals. In the present review, skin characteristics, such as thickness of skin, lipid content, hair follicle density, and enzyme activity in each model are compared to human skin. In addition, intra- and inter-individual variation in animal models, permeation parameter correlation between animal models and human skin, and utilization of cultured human skin models are also descried. Pig, guinea pig, and hairless rat are generally selected for this purpose. Each animal model has advantages and weaknesses for utilization in in vitro skin permeation experiments. Understanding of skin permeation characteristics such as permeability coefficient (P), diffusivity (D), and partition coefficient (K) for each skin model would be necessary to obtain better correlations for animal models to human skin permeation
    corecore