1,768 research outputs found

    Suppression of Magnetic Order by Pressure in BaFe2As2

    Full text link
    We performed the dc resistivity and the ZF 75As-NMR measurement of BaFe2As2 under high pressure. The T-P phase diagram of BaFe2As2 determined from resistivity anomalies and the ZF 75As-NMR clearly revealed that the SDW anomaly is quite robust against P.Comment: 2 pages, 2 figure

    Nanometre-scale nuclear-spin device for quantum information processing

    Get PDF
    We have developed semiconductor point contact devices in which nuclear spins in a nanoscale region are coherently controlled by all-electrical methods. Different from the standard nuclear-magnetic resonance technique, the longitudinal magnetization of nuclear spins is directly detected by measuring resistance, resulting in ultra-sensitive detection of the microscopic quantity of nuclear spins. All possible coherent oscillations have been successfully demonstrated between two levels from four nuclear spin states of I = 3/2 nuclei. Quantum information processing is discussed based on two fictitious qubits of an I = 3/2 system and methods are described for performing arbitrary logical gates both on one and two qubits. A scheme for quantum state tomography based on Mz-detection is also proposed. As the starting point of quantum manipulations, we have experimentally prepared the effective pure states for the I = 3/2 nuclear spin system.Comment: 16 pages, 5 figure

    Nuclear Spins in a Nanoscale Device for Quantum Information Processing

    Get PDF
    Coherent oscillations between any two levels from four nuclear spin states of I=3/2 have been demonstrated in a nanometre-scale NMR semiconductor device, where nuclear spins are all-electrically controlled. Using this device, we discuss quantum logic operations on two fictitious qubits of the I=3/2 system, and propose a quantum state tomography scheme based on the measurement of longitudinal magnetization, MzM_z.Comment: 5 pages, 4 figure

    Strongly pinned skyrmionic bubbles and higher-order nonlinear Hall resistances at the interface of Pt/FeSi bilayer

    Full text link
    Engineering of magnetic heterostructures for spintronic applications has entered a new phase, driven by the recent discoveries of topological materials and exfoliated van der Waals materials. Their low-dimensional properties can be dramatically modulated in designer heterostructures via proximity effects from adjacent materials, thus enabling the realization of diverse quantum states and functionalities. Here we investigate spin-orbit coupling (SOC) proximity effects of Pt on the recently discovered quasi-two-dimensional ferromagnetic state at FeSi surface. Skyrmionic bubbles (SkBs) are formed as a result of the enhanced interfacial Dzyloshinskii-Moriya interaction. The strong pinning effects on the SkBs are evidenced from the significant dispersion in size and shape of the SkBs and are further identified as a greatly enhanced threshold current density required for depinning of the SkBs. The robust integrity of the SkB assembly leads to the emergence of higher-order nonlinear Hall effects in the high current density regime, which originate from nontrivial Hall effects due to the noncollinearity of the spin texture, as well as from the current-induced magnetization dynamics via the augmented spin-orbit torque.Comment: 4 figure

    Current-induced cooling phenomenon in a two-dimensional electron gas under a magnetic field

    Full text link
    We investigate the spatial distribution of temperature induced by a dc current in a two-dimensional electron gas (2DEG) subjected to a perpendicular magnetic field. We numerically calculate the distributions of the electrostatic potential phi and the temperature T in a 2DEG enclosed in a square area surrounded by insulated-adiabatic (top and bottom) and isopotential-isothermal (left and right) boundaries (with phi_{left} < phi_{right} and T_{left} =T_{right}), using a pair of nonlinear Poisson equations (for phi and T) that fully take into account thermoelectric and thermomagnetic phenomena, including the Hall, Nernst, Ettingshausen, and Righi-Leduc effects. We find that, in the vicinity of the left-bottom corner, the temperature becomes lower than the fixed boundary temperature, contrary to the naive expectation that the temperature is raised by the prevalent Joule heating effect. The cooling is attributed to the Ettingshausen effect at the bottom adiabatic boundary, which pumps up the heat away from the bottom boundary. In order to keep the adiabatic condition, downward temperature gradient, hence the cooled area, is developed near the boundary, with the resulting thermal diffusion compensating the upward heat current due to the Ettingshausen effect.Comment: 25 pages, 7 figure

    q-Functional Wick's theorems for particles with exotic statistics

    Get PDF
    In the paper we begin a description of functional methods of quantum field theory for systems of interacting q-particles. These particles obey exotic statistics and are the q-generalization of the colored particles which appear in many problems of condensed matter physics, magnetism and quantum optics. Motivated by the general ideas of standard field theory we prove the q-functional analogues of Hori's formulation of Wick's theorems for the different ordered q-particle creation and annihilation operators. The formulae have the same formal expressions as fermionic and bosonic ones but differ by a nature of fields. This allows us to derive the perturbation series for the theory and develop analogues of standard quantum field theory constructions in q-functional form.Comment: 15 pages, LaTeX, submitted to J.Phys.

    Simultaneous Excitation of Spins and Pseudospins in the Bilayer ν=1\nu=1 Quantum Hall State

    Full text link
    The tilting angular dependence of the energy gap was measured in the bilayer quantum Hall state at the Landau level filling ν=1\nu=1 by changing the density imbalance between the two layers. The observed gap behavior shows a continuous transformation from the bilayer balanced density state to the monolayer state. Even a sample with 33 K tunneling gap shows the same activation energy anomaly reported by Murphy {\it et al.}. We discuss a possible relation between our experimental results and the quantum Hall ferromagnet of spins and pseudospins.Comment: 4 pages, 4 figure
    • …
    corecore