109 research outputs found

    Correlation between COVID-19 morbidity and mortality rates in Japan and local population density, temperature and absolute humidity

    Full text link
    This study analyzed the morbidity and mortality rates of the COVID-19 pandemic in different prefectures of Japan. Under the constraint that daily maximum confirmed deaths and daily maximum cases should exceed 4 and 10, respectively, 14 prefectures were included, and cofactors affecting the morbidity and mortality rates were evaluated. In particular, the number of confirmed deaths was assessed excluding the cases of nosocomial infections and nursing home patients. A mild correlation was observed between morbidity rate and population density (R2=0.394). In addition, the percentage of the elderly per population was also found to be non-negligible. Among weather parameters, the maximum temperature and absolute humidity averaged over the duration were found to be in modest correlation with the morbidity and mortality rates, excluding the cases of nosocomial infections. The lower morbidity and mortality are observed for higher temperature and absolute humidity. Multivariate analysis considering these factors showed that determination coefficients for the spread, decay, and combined stages were 0.708, 0.785, and 0.615, respectively. These findings could be useful for intervention planning during future pandemics, including a potential second COVID-19 outbreak.Comment: International Journal of Environmental Research and Public Health, 202

    Effect of Loudspeakers on the In Situ Electric Field in a Driver Body Model Exposed to an Electric Vehicle Wireless Power Transfer System

    Get PDF
    This study computationally evaluates the effect of loudspeakers on the in situ electric field in a driver body model exposed to the magnetic field from a wireless power transfer (WPT) system in an electric vehicle (EV), one with a body made of carbon fiber reinforced plastic (CFRP) and the other made with aluminum. A quasi-static two-step approach was applied to compute the in situ electric field. The computational results showed that the magnetic field distribution generated by the WPT is significantly altered around the loudspeakers, and shows obvious discontinuity and local enhancement. The maximum spatial-average magnetic field strength in the driver’s body was increased by 11% in the CFRP vehicle. It was 2.25 times larger than the reference levels (RL) prescribed in the International Commission of Non-Ionizing Radiation Protection (ICNIRP) guidelines in 2010. In addition, we found that the in situ electric field computed by the line- and volume-averaging methods were stable if the top 0.1% voxels are excluded. The maximum value was well below the basic restriction (BR) of the ICNIRP guidelines. Nevertheless, the presence of the loudspeaker led to increments in the electric field strength in parts of the human body, suggesting the potential influence of permissible transmitting power in the WPT system. The maximum electric field strength in the thigh and buttock with the woofer, increased by 27% in the CFRP vehicle. The arm value was up to 3 times higher than that obtained without the tweeter in the aluminum vehicle. Moreover, this study found that the maximum electric field strength depended on the location of the loudspeaker with respect to the WPT system and the separation from the driver model. Therefore, the loudspeaker should be considered when evaluating the maximum in situ electric field strength in the vehicle body design stage. Document type: Articl

    Effects of dielectric permittivities on skin heating due to millimeter wave exposure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Because the possibility of millimeter wave (MMW) exposure has increased, public concern about the health issues due to electromagnetic radiation has also increased. While many studies have been conducted for MMW exposure, the effect of dielectric permittivities on skin heating in multilayer/heterogeneous human-body models have not been adequately investigated. This is partly due to the fact that a detailed investigation of skin heating in a multilayer model by computational methods is difficult since many parameters are involved. In the present study, therefore, theoretical analyses were conducted to investigate the relationship between dielectric permittivities and MMW-induced skin heating in a one-dimensional three-layer model (skin, fat, and muscle).</p> <p>Methods</p> <p>Approximate expressions were derived for the temperature elevation and temperature difference in the skin due to MMW exposure from analytical solutions for the temperature distribution. First, the power absorption distribution was approximated from the analytical solution for a one-layer model (skin only). Then, the analytical expression of the temperature in the three-layer model was simplified on the basis of the proposal in our previous study. By examining the approximate expressions, the dominant term influencing skin heating was clarified to identify the effects of the dielectric permittivities. Finally, the effects of dielectric permittivities were clarified by applying partial differentiation to the derived dominant term.</p> <p>Results</p> <p>Skin heating can be characterized by the parameters associated with the dielectric permittivities, independently of morphological and thermal parameters. With the derived expressions, it was first clarified that skin heating correlates with the total power absorbed in the skin rather than the specific absorption rate (SAR) at the skin surface or the incident power density. Using Debye-type expression we next investigated the effect of frequency dispersion on the complex relative permittivity of tissue. The parametric study on the total power absorbed in the skin showed that skin heating increases as the static permittivity and static conductivity decrease. In addition, the maximum temperature elevation on the body surface was approximately 1.6 times that of the minimum case. This difference is smaller than the difference caused by the thermal and morphological parameters reported in our previous study.</p> <p>Conclusion</p> <p>This paper analytically clarified the effects of dielectric permittivities on the thermally steady state temperature elevation and the temperature difference in the skin of a one-dimensional three-layer model due to MMW exposure.</p

    Influence of Absolute Humidity, Temperature and Population Density on COVID-19 Spread and Decay Durations: Multi-prefecture Study in Japan

    Full text link
    This study analyzed the spread and decay durations of the COVID-19 pandemic in different prefectures of Japan. During the pandemic, affordable healthcare was widely available in Japan and the medical system did not suffer a collapse, making accurate comparisons between prefectures possible. For the 16 prefectures included in this study that had daily maximum confirmed cases exceeding ten, the number of daily confirmed cases follow bell-shape or log-normal distribution in most prefectures. A good correlation was observed between the spread and decay durations. However, some exceptions were observed in areas where travelers returned from foreign countries, which were defined as the origins of infection clusters. Excluding these prefectures, the population density was shown to be a major factor affecting the spread and decay patterns, with R2=0.39 (p<0.05) and 0.42 (p<0.05), respectively, approximately corresponding to social distancing. The maximum absolute humidity was found to affect the decay duration normalized by the population density (R2>0.36, p <0.05). Our findings indicate that the estimated pandemic spread duration, based on the multivariate analysis of maximum absolute humidity, ambient temperature, and population density (adjusted R2=0.53, p-value<0.05), could prove useful for intervention planning during potential future pandemics, including a second COVID-19 outbreak.Comment: Submitted to: International Journal of Environmental Research and Public Healt
    • …
    corecore