2 research outputs found

    3D-Spatiotemporal Forecasting the Expansion of Supernova Shells Using Deep Learning toward High-Resolution Galaxy Simulations

    Full text link
    Supernova (SN) plays an important role in galaxy formation and evolution. In high-resolution galaxy simulations using massively parallel computing, short integration timesteps for SNe are serious bottlenecks. This is an urgent issue that needs to be resolved for future higher-resolution galaxy simulations. One possible solution would be to use the Hamiltonian splitting method, in which regions requiring short timesteps are integrated separately from the entire system. To apply this method to the particles affected by SNe in a smoothed-particle hydrodynamics simulation, we need to detect the shape of the shell on and within which such SN-affected particles reside during the subsequent global step in advance. In this paper, we develop a deep learning model, 3D-MIM, to predict a shell expansion after a SN explosion. Trained on turbulent cloud simulations with particle mass mgas=1m_{\rm gas}=1M⊙_\odot, the model accurately reproduces the anisotropic shell shape, where densities decrease by over 10 per cent by the explosion. We also demonstrate that the model properly predicts the shell radius in the uniform medium beyond the training dataset of inhomogeneous turbulent clouds. We conclude that our model enables the forecast of the shell and its interior where SN-affected particles will be present.Comment: 14 pages, 14 figures, 3 tables, accepted for MNRA

    Surrogate Modeling for Computationally Expensive Simulations of Supernovae in High-Resolution Galaxy Simulations

    Full text link
    Some stars are known to explode at the end of their lives, called supernovae (SNe). The substantial amount of matter and energy that SNe release provides significant feedback to star formation and gas dynamics in a galaxy. SNe release a substantial amount of matter and energy to the interstellar medium, resulting in significant feedback to star formation and gas dynamics in a galaxy. While such feedback has a crucial role in galaxy formation and evolution, in simulations of galaxy formation, it has only been implemented using simple {\it sub-grid models} instead of numerically solving the evolution of gas elements around SNe in detail due to a lack of resolution. We develop a method combining machine learning and Gibbs sampling to predict how a supernova (SN) affects the surrounding gas. The fidelity of our model in the thermal energy and momentum distribution outperforms the low-resolution SN simulations. Our method can replace the SN sub-grid models and help properly simulate un-resolved SN feedback in galaxy formation simulations. We find that employing our new approach reduces the necessary computational cost to ∼\sim 1 percent compared to directly resolving SN feedback.Comment: 11 pages, 9 figures, Accepted for the NeurIPS 2023 AI4Science Worksho
    corecore