9 research outputs found

    DNA markers based on retrotransposon insertion polymorphisms can detect short DNA fragments for strawberry cultivar identification

    Get PDF
    In this study, DNA markers were developed for discrimination of strawberry (Fragaria × ananassa L.) cultivars based on retrotransposon insertion polymorphisms. We performed a comprehensive genomic search to identify retrotransposon insertion sites and subsequently selected one retrotransposon family, designated CL3, which provided reliable discrimination among strawberry cultivars. Through analyses of 75 strawberry cultivars, we developed eight cultivar-specific markers based on CL3 retrotransposon insertion sites. Used in combination with 10 additional polymorphic markers, we differentiated 35 strawberry cultivars commonly cultivated in Japan. In addition, we demonstrated that the retrotransposon-based markers were effective for PCR detection of DNA extracted from processed food materials, whereas a SSR marker was ineffective. These results indicated that the retrotransposon-based markers are useful for cultivar discrimination for processed food products, such as jams, in which DNA may be fragmented or degraded

    Efficient screening of long terminal repeat retrotransposons that show high insertion polymorphism via high-throughput sequencing of the primer binding site

    Get PDF
    Retrotransposons have been used frequently for the development of molecular markers by using their insertion polymorphisms among cultivars, because multiple copies of these elements are dispersed throughout the genome and inserted copies are inherited genetically. Although a large number of long terminal repeat (LTR) retrotransposon families exist in the higher eukaryotic genomes, the identification of families that show high insertion polymorphism has been challenging. Here, we performed an efficient screening of these retrotransposon families using an Illumina HiSeq2000 sequencing platform with comprehensive LTR library construction based on the primer binding site (PBS), which is located adjacent to the 5′ LTR and has a motif that is universal and conserved among LTR retrotransposon families. The paired-end sequencing library of the fragments containing a large number of LTR sequences and their insertion sites was sequenced for seven strawberry (Fragaria × ananassa Duchesne) cultivars and one diploid wild species (Fragaria vesca L.). Among them, we screened 24 families with a “unique” insertion site that appeared only in one cultivar and not in any others, assuming that this type of insertion should have occurred quite recently. Finally, we confirmed experimentally the selected LTR families showed high insertion polymorphisms among closely related cultivars

    Thermotolerant cyclamen with reduced acrolein and methyl vinyl ketone

    Get PDF
    Reduced levels of trienoic fatty acids (TAs) in chloroplast membranes induce thermotolerance in several plant species, but the underlying mechanisms remain unclear. TA peroxidation in plant cell membranes generates cytotoxic, TA-derived compounds containing alpha,beta-unsaturated carbonyl groups. The relationship between low TA levels and the amounts of cytotoxic TA-derived compounds was examined using thermotolerant transgenic cyclamen (Cyclamen persicum Mill.) with low TA contents. Changes in the levels of the cytotoxic TA-derived acrolein (ACR), methyl vinyl ketone (MVK), (E)-2-hexenal, 4-hydroxy-2-nonenal, and malondialdehyde were analysed in the leaf tissues of wild-type (WT) and thermotolerant transgenic cyclamen under heat stress. Levels of ACR and MVK in the WT increased in parallel with the occurrence of heat-induced tissue damage, whereas no such changes were observed in the thermotolerant transgenic lines. Furthermore, exogenous ACR and MVK infiltrated into leaves to concentrations similar to those observed in heat-stressed WT leaves caused similar disease symptoms. These results suggest that thermotolerance in transgenic cyclamen depends on reduced production rates of ACR and MVK under heat stress, due to the low level of TAs in these plants.Ministry of Education, Science and Culture of Japan/211114002BRAI

    DNA markers based on retrotransposon insertion polymorphisms can detect short DNA fragments for strawberry cultivar identification

    No full text
    In this study, DNA markers were developed for discrimination of strawberry (Fragaria × ananassa L.) cultivars based on retrotransposon insertion polymorphisms. We performed a comprehensive genomic search to identify retrotransposon insertion sites and subsequently selected one retrotransposon family, designated CL3, which provided reliable discrimination among strawberry cultivars. Through analyses of 75 strawberry cultivars, we developed eight cultivar-specific markers based on CL3 retrotransposon insertion sites. Used in combination with 10 additional polymorphic markers, we differentiated 35 strawberry cultivars commonly cultivated in Japan. In addition, we demonstrated that the retrotransposon-based markers were effective for PCR detection of DNA extracted from processed food materials, whereas a SSR marker was ineffective. These results indicated that the retrotransposon-based markers are useful for cultivar discrimination for processed food products, such as jams, in which DNA may be fragmented or degraded

    Achalasia

    No full text
    corecore