14 research outputs found

    Hadronic dissipative effects on transverse dynamics at RHIC

    Full text link
    We simulate the dynamics of Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC) with a hybrid model that treats the quark-gluon plasma macroscopically as an ideal fluid, but models the hadron resonance gas microscopically using a hadronic cascade. We find that much of the mass-ordering pattern for v_2(p_T) observed at RHIC is generated during the hadronic stage due to build-up of additional radial flow. We also find that the mass-ordering pattern is violated for phi meson due to small interaction cross section in the hadron resonance gas.Comment: 4 pages, 4 figures. To be published in the proceedings of Quark Matter 2008, Jaipur, Indi

    Energy loss in high energy heavy ion collisions from the Hydro+Jet model

    Get PDF
    We investigate the effect of energy loss of jets in high energy heavy ion collisions by using a full three-dimensional space-time evolution of a fluid combined with (mini-)jets that are explicitly evolved in space-time. In order to fit the pi^0 data for the Au+Au collisions at sqrt(s_{NN}) = 130 GeV, the space-time averaged energy loss dE/dx(tau <= 3 fm/c) = 0.36 GeV/fm is extracted within the model. It is found that most energy loss occurs at the very early time less than 2 fm/c in the QGP phase and that energy loss in the mixed phase is negligible within our parameterization for jet energy loss. This is a consequence of strong expansion of the system.Comment: 4 pages, 5 figures; one figure adde

    Temperature dependent sound velocity in hydrodynamic equations for relativistic heavy-ion collisions

    Full text link
    We analyze the effects of different forms of the sound-velocity function cs(T) on the hydrodynamic evolution of matter formed in the central region of relativistic heavy-ion collisions. At high temperatures (above the critical temperature Tc) the sound velocity is calculated from the recent lattice simulations of QCD, while in the low temperature region it is obtained from the hadron gas model. In the intermediate region we use different interpolations characterized by the values of the sound velocity at the local maximum (at T = 0.4 Tc) and local minimum (at T = Tc). In all considered cases the temperature dependent sound velocity functions yield the entropy density, which is consistent with the lattice QCD simulations at high temperature. Our calculations show that the presence of a distinct minimum of the sound velocity leads to a very long (about 20 fm/c) evolution time of the system, which is not compatible with the recent estimates based on the HBT interferometry. Hence, we conclude that the hydrodynamic description is favored in the case where the cross-over phase transition renders the smooth sound velocity function with a possible shallow minimum at Tc.Comment: 6 pages, 3 figures, talk given at SQM'07 Levoca, Slovaki

    Feeding of the elliptic flow by hard partons

    Full text link
    We propose that in nuclear collisions at the LHC the elliptic flow may get a contribution from leading hard and semihard partons which deposit energy and momentum into the hydrodynamic bulk medium. The crucial effect is that these partons induce wakes which interact and merge if they come together. The contribution to the integrated elliptic flow is estimated with the help of a toy model to about 25% of the observed value and shows strong event-by-event fluctuations.Comment: 9 pages, 3 figure

    Elliptic Flow: A Brief Review

    Full text link
    One of the fundamental questions in the field of subatomic physics is what happens to matter at extreme densities and temperatures as may have existed in the first microseconds after the Big Bang and exists, perhaps, in the core of dense neutron stars. The aim of heavy-ion physics is to collide nuclei at very high energies and thereby create such a state of matter in the laboratory. The experimental program started in the 1990's with collisions made available at the Brookhaven Alternating Gradient Synchrotron (AGS), the CERN Super Proton Synchrotron (SPS) and continued at the Brookhaven Relativistic Heavy-Ion Collider (RHIC) with maximum center of mass energies of 4.75, 17.2 and 200 GeV respectively. Collisions of heavy-ions at the unprecedented energy of 2.76 TeV have recently become available at the LHC collider at CERN. In this review I will give a brief introduction to the physics of ultra-relativistic heavy-ion collisions and discuss the current status of elliptic flow measurements.Comment: version accepted by NJ

    Hydrodynamic afterburner for the CGC at RHIC

    Full text link
    Firstly, we give a short review about the hydrodynamic model and its application to the elliptic flow phenomena in relativistic heavy ion collisions. Secondly, we show the first approach to construct a unified model for the description of the dynamics in relativistic heavy ion collisions.Comment: 15 pages, 7 figures, invited talk presented at "Hot Quarks 2004", July 18-24, 2004, Taos Valley, NM, US

    Quark-Gluon Plasma at RHIC and the LHC: Perfect Fluid too Perfect?

    Full text link
    Relativistic heavy ion collisions have reached energies that enable the creation of a novel state of matter termed the quark-gluon plasma. Many observables point to a picture of the medium as rapidly equilibrating and expanding as a nearly inviscid fluid. In this article, we explore the evolution of experimental flow observables as a function of collision energy and attempt to reconcile the observed similarities across a broad energy regime in terms of the initial conditions and viscous hydrodynamics. If the initial spatial anisotropies are very similar for all collision energies from 39 GeV to 2.76 TeV, we find that viscous hydrodynamics might be consistent with the level of agreement for v2 of unidentified hadrons as a function of pT . However, we predict a strong collision energy dependence for the proton v2(pT). The results presented in this paper highlight the need for more systematic studies and a re-evaluation of previously stated sensitivities to the early time dynamics and properties of the medium.Comment: 11 pages, 9 figures, submitted to the New Journal of Physics focus issue "Strongly Correlated Quantum Fluids: From Ultracold Quantum Gases to QCD Plasmas

    Jet tomography

    Full text link
    I summarize the recent advances in jet tomographic studies of cold and hot nuclear matter based on perturbative QCD calculations of medium-induced gluon bremsstrahlung. Quantitative applications to ultrarelativistic heavy ion reactions at RHIC indicate the creation of a deconfined state of QCD with initial energy density on the order of 100 times cold nuclear matter density.Comment: Plenary talk given at the seventeenth international conference on Ultra-Relativistic Nucleus-Nucleus Collisions (Quark Matter 2004). 8 pages, 12 figures. Updated references, updated Table

    Particlization in hybrid models

    Full text link
    In hybrid models, which combine hydrodynamical and transport approaches to describe different stages of heavy-ion collisions, conversion of fluid to individual particles, particlization, is a non-trivial technical problem. We describe in detail how to find the particlization hypersurface in a 3+1 dimensional model, and how to sample the particle distributions evaluated using the Cooper-Frye procedure to create an ensemble of particles as an initial state for the transport stage. We also discuss the role and magnitude of the negative contributions in the Cooper-Frye procedure.Comment: 18 pages, 28 figures, EPJA: Topical issue on "Relativistic Hydro- and Thermodynamics"; version accepted for publication, typos and error in Eq.(1) corrected, the purpose of sampling and change from UrQMD to fluid clarified, added discussion why attempts to cancel negative contributions of Cooper-Frye are not applicable her

    Flow in heavy-ion collisions - Theory Perspective

    Full text link
    I review recent developments in the field of relativistic hydrodynamics and its application to the bulk dynamics in heavy-ion collisions at the Relativistic Heavy- Ion Collider (RHIC) and the Large Hadron Collider (LHC). In particular, I report on progress in going beyond second order relativistic viscous hydrodynamics for conformal fluids, including temperature dependent shear viscosity to entropy density ratios, as well as coupling hydrodynamic calculations to microscopic hadronic rescattering models. I describe event-by-event hydrodynamic simulations and their ability to compute higher harmonic flow coefficients. Combined comparisons of all harmonics to recent experimental data from both RHIC and LHC will potentially allow to determine the desired details of the initial state and the medium properties of the quark-gluon plasma produced in heavy-ion collisions.Comment: 8 pages, Invited plenary talk at the 22nd International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2011), May 23-28 2011, Annecy, Franc
    corecore