2,179 research outputs found

    Gravitational Wave Background from Neutrino-Driven Gamma-Ray Bursts

    Full text link
    We discuss the gravitational wave background (GWB) from a cosmological population of gamma-ray bursts (GRBs). Among various emission mechanisms for the gravitational waves (GWs), we pay a particular attention to the vast anisotropic neutrino emissions from the accretion disk around the black hole formed after the so-called failed supernova explosions. The produced GWs by such mechanism are known as burst with memory, which could dominate over the low-frequency regime below \sim 10Hz. To estimate their amplitudes, we derive general analytic formulae for gravitational waveform from the axisymmetric jets. Based on the formulae, we first quantify the spectrum of GWs from a single GRB. Then, summing up its cosmological population, we find that the resultant value of the density parameter becomes roughly \Omega_{GW} \approx 10^{-20} over the wide-band of the low-frequency region, f\sim 10^{-4}-10^1Hz. The amplitude of GWB is sufficiently smaller than the primordial GWBs originated from an inflationary epoch and far below the detection limit.Comment: 6 pages, 4 figures, accepted for publication in MNRA

    Scalar perturbations in braneworld cosmology

    Get PDF
    We study the behaviour of scalar perturbations in the radiation-dominated era of Randall-Sundrum braneworld cosmology by numerically solving the coupled bulk and brane master wave equations. We find that density perturbations with wavelengths less than a critical value (set by the bulk curvature length) are amplified during horizon re-entry. This means that the radiation era matter power spectrum will be at least an order of magnitude larger than the predictions of general relativity (GR) on small scales. Conversely, we explicitly confirm from simulations that the spectrum is identical to GR on large scales. Although this magnification is not relevant for the cosmic microwave background or measurements of large scale structure, it will have some bearing on the formation of primordial black holes in Randall-Sundrum models.Comment: 17 pages, 7 figure

    Study of gravitational radiation from cosmic domain walls

    Full text link
    In this paper, following the previous study, we evaluate the spectrum of gravitational wave background generated by domain walls which are produced if some discrete symmetry is spontaneously broken in the early universe. We apply two different methods to calculate the gravitational wave spectrum: One is to calculate the gravitational wave spectrum directly from numerical simulations, and another is to calculate it indirectly by estimating the unequal time anisotropic stress power spectrum of the scalar field. Both analysises indicate that the slope of the spectrum changes at two characteristic frequencies corresponding to the Hubble radius at the decay of domain walls and the width of domain walls, and that the spectrum between these two characteristic frequencies becomes flat or slightly red tilted. The second method enables us to evaluate the GW spectrum semi-analytically for the frequencies which can not be resolved in the finite box lattice simulations, but relies on the assumptions for the unequal time correlations of the source.Comment: 17 pages, 9 figures; revised version of the manuscript, accepted for publication in JCA

    Evolution of String-Wall Networks and Axionic Domain Wall Problem

    Full text link
    We study the cosmological evolution of domain walls bounded by strings which arise naturally in axion models. If we introduce a bias in the potential, walls become metastable and finally disappear. We perform two dimensional lattice simulations of domain wall networks and estimate the decay rate of domain walls. By using the numerical results, we give a constraint for the bias parameter and the Peccei-Quinn scale. We also discuss the possibility to probe axion models by direct detection of gravitational waves produced by domain walls.Comment: 19 pages, 7 figures; revised version of the manuscript, accepted for publication in JCA

    Primordial perturbations from slow-roll inflation on a brane

    Get PDF
    In this paper we quantise scalar perturbations in a Randall-Sundrum-type model of inflation where the inflaton field is confined to a single brane embedded in five-dimensional anti-de Sitter space-time. In the high energy regime, small-scale inflaton fluctuations are strongly coupled to metric perturbations in the bulk and gravitational back-reaction has a dramatic effect on the behaviour of inflaton perturbations on sub-horizon scales. This is in contrast to the standard four-dimensional result where gravitational back-reaction can be neglected on small scales. Nevertheless, this does not give rise to significant particle production, and the correction to the power spectrum of the curvature perturbations on super-horizon scales is shown to be suppressed by a slow-roll parameter. We calculate the complete first order slow-roll corrections to the spectrum of primordial curvature perturbations.Comment: 23 pages, 10 figure

    Detecting a stochastic background of gravitational waves in the presence of non-Gaussian noise: A performance of generalized cross-correlation statistic

    Get PDF
    We discuss a robust data analysis method to detect a stochastic background of gravitational waves in the presence of non-Gaussian noise. In contrast to the standard cross-correlation (SCC) statistic frequently used in the stochastic background searches, we consider a {\it generalized cross-correlation} (GCC) statistic, which is nearly optimal even in the presence of non-Gaussian noise. The detection efficiency of the GCC statistic is investigated analytically, particularly focusing on the statistical relation between the false-alarm and the false-dismissal probabilities, and the minimum detectable amplitude of gravitational-wave signals. We derive simple analytic formulae for these statistical quantities. The robustness of the GCC statistic is clarified based on these formulae, and one finds that the detection efficiency of the GCC statistic roughly corresponds to the one of the SCC statistic neglecting the contribution of non-Gaussian tails. This remarkable property is checked by performing the Monte Carlo simulations and successful agreement between analytic and simulation results was found.Comment: 15 pages, 8 figures, presentation and some figures modified, final version to be published in PR

    Advantageous grain boundaries in iron pnictide superconductors

    Get PDF
    High critical temperature superconductors have zero power consumption and could be used to produce ideal electric power lines. The principal obstacle in fabricating superconducting wires and tapes is grain boundaries-the misalignment of crystalline orientations at grain boundaries, which is unavoidable for polycrystals, largely deteriorates critical current density. Here, we report that High critical temperature iron pnictide superconductors have advantages over cuprates with respect to these grain boundary issues. The transport properties through well-defined bicrystal grain boundary junctions with various misorientation angles (thetaGB) were systematically investigated for cobalt-doped BaFe2As2 (BaFe2As2:Co) epitaxial films fabricated on bicrystal substrates. The critical current density through bicrystal grain boundary (JcBGB) remained high (> 1 MA/cm2) and nearly constant up to a critical angle thetac of ~9o, which is substantially larger than the thetac of ~5o for YBCO. Even at thetaGB > thetac, the decay of JcBGB was much smaller than that of YBCO.Comment: to appear in Nature Communication

    Coherent spectroscopy of optical activity

    No full text
    Control of light with light is at the heart of optical information processing. Here we demonstrate for the first time, optical control of light polarization without nonlinearity by exploiting the coherent interaction of light waves on optically active metasurfaces. This polarization effect is ultrafast, compatible with arbitrarily low intensities and offers new opportunities within long-established polarization spectroscopy and sensing techniques

    Numerical study of curvature perturbations in a brane-world inflation at high-energies

    Get PDF
    We study the evolution of scalar curvature perturbations in a brane-world inflation model in a 5D Anti-de Sitter spacetime. The inflaton perturbations are confined to a 4D brane but they are coupled to the 5D bulk metric perturbations. We numerically solve full coupled equations for the inflaton perturbations and the 5D metric perturbations using Hawkins-Lidsey inflationary model. At an initial time, we assume that the bulk is unperturbed. We find that the inflaton perturbations at high energies are strongly coupled to the bulk metric perturbations even on subhorizon scales, leading to the suppression of the amplitude of the comoving curvature perturbations at a horizon crossing. This indicates that the linear perturbations of the inflaton field does not obey the usual 4D Klein-Gordon equation due to the coupling to 5D gravitational field on small scales and it is required to quantise the coupled brane-bulk system in a consistent way in order to calculate the spectrum of the scalar perturbations in a brane-world inflation.Comment: 16 pages, 5 figure
    • …
    corecore