18 research outputs found

    Freestanding, bendable thin film for supercapacitors using DNA-dispersed double walled carbon nanotubes

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in APPLIED PHYSICS LETTERS. 95(23):233104 (2009) and may be found at https://doi.org/10.1063/1.3271768 .Freestanding, thin, and bendable electrodes for supercapacitors are fabricated by filtering DNA-dispersed double walled carbon nanotubes (DWNTs) into a thin film and thermally treating the film in argon. We found that DNA has the ability to disperse the strongly bundled DWNTs and is converted to phosphorus-enriched carbons, which give rise to strong redox peaks at around 0.4 V. The combination of the large capacitance from the DNA-derived carbons and the high electrical conductivity of carbon nanotubes allow DWNT/DNA films to be used as a potential electrode material for supercapacitors.ArticleAPPLIED PHYSICS LETTERS. 95(23):233104 (2009)journal articl

    Freestanding, bendable thin film for supercapacitors using DNA-dispersed double walled carbon nanotubes

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in APPLIED PHYSICS LETTERS. 95(23):233104 (2009) and may be found at https://doi.org/10.1063/1.3271768 .Freestanding, thin, and bendable electrodes for supercapacitors are fabricated by filtering DNA-dispersed double walled carbon nanotubes (DWNTs) into a thin film and thermally treating the film in argon. We found that DNA has the ability to disperse the strongly bundled DWNTs and is converted to phosphorus-enriched carbons, which give rise to strong redox peaks at around 0.4 V. The combination of the large capacitance from the DNA-derived carbons and the high electrical conductivity of carbon nanotubes allow DWNT/DNA films to be used as a potential electrode material for supercapacitors.ArticleAPPLIED PHYSICS LETTERS. 95(23):233104 (2009)journal articl

    A de novo TOP2B variant associated with global developmental delay and autism spectrum disorder

    No full text
    Abstract Background TOP2B encodes type II topoisomerase beta, which controls topological changes during DNA transcription. TOP2B is expressed in the developing nervous system and is involved in brain development and neural differentiation. Recently, a de novo missense TOP2B variant (c.187C>T) has been identified in an individual with neurodevelopmental disorder (NDD). However, the association between TOP2B variants and NDDs remains uncertain. Methods Trio‐based whole‐exome sequencing was performed on a 7‐year‐old girl, presenting muscle hypotonia, stereotypic hand movements, epilepsy, global developmental delay, and autism spectrum disorder. Brain magnetic resonance images were normal. She was unable to walk independently and spoke no meaningful words. Results We found a de novo variant in TOP2B (NM_001330700.1:c.187C>T, p.(His63Tyr)), which is identical to the previous case. The clinical features of the two individuals with the c.187C>T variant overlapped. Conclusion Our study supports the finding that TOP2B variants may cause NDDs
    corecore