24 research outputs found

    Protein Conformational Changes in the Bacteriorhodopsin Photocycle: Comparison of Findings from Electron and X-Ray Crystallographic Analyses

    Get PDF
    Light-driven conformational changes in the membrane protein bacteriorhodopsin have been studied extensively using X-ray and electron crystallography, resulting in the deposition of >30 sets of coordinates describing structural changes at various stages of proton transport. Using projection difference Fourier maps, we show that coordinates reported by different groups for the same photocycle intermediates vary considerably in the extent and nature of conformational changes. The different structures reported for the same intermediate cannot be reconciled in terms of differing extents of change on a single conformational trajectory. New measurements of image phases obtained by cryo-electron microscopy of the D96G/F171C/F219L triple mutant provide independent validation for the description of the large protein conformational change derived at 3.2 ร… resolution by electron crystallography of 2D crystals, but do not support atomic models for light-driven conformational changes derived using X-ray crystallography of 3D crystals. Our findings suggest that independent determination of phase information from 2D crystals can be an important tool for testing the accuracy of atomic models for membrane protein conformational changes

    Structural Model for 12-Helix Transporters Belonging to the Major Facilitator Superfamily

    No full text
    The major facilitator superfamily includes a large collection of evolutionarily related proteins that have been implicated in the transport of a variety of solutes and metabolites across the membranes of organisms ranging from bacteria to humans. We have recently reported the three-dimensional structure, at 6.5 ร… resolution, of the oxalate transporter, OxlT, a representative member of this superfamily. In the oxalate-bound state, 12 helices surround a central cavity to form a remarkably symmetrical structure that displays a well-defined pseudo twofold axis perpendicular to the plane of the membrane as well as two less pronounced, mutually perpendicular pseudo twofold axes in the plane of the membrane. Here, we combined this structural information with sequence information from other members of this protein family to arrive at models for the arrangement of helices in this superfamily of transport proteins. Our analysis narrows down the number of helix arrangements from about a billion starting possibilities to a single probable model for the relative spatial arrangement for the 12 helices, consistent both with our structural findings and with the majority of previous biochemical studies on members of this superfamily

    Projection structure and molecular architecture of OxlT, a bacterial membrane transporter

    No full text
    The major facilitator superfamily (MFS) represents the largest collection of evolutionarily related members within the class of membrane โ€˜carrierโ€™ proteins. OxlT, a representative example of the MFS, is an oxalate-transporting membrane protein in Oxalobacter formigenes. From an electron crystallographic analysis of two-dimensional crystals of OxlT, we have determined the projection structure of this membrane transporter. The projection map at 6 โ„ซ resolution indicates the presence of 12 transmembrane helices in each monomer of OxlT, with one set of six helices related to the other set by an approximate internal two-fold axis. The projection map reveals the existence of a central cavity, which we propose to be part of the pathway of oxalate transport. By combining information from the projection map with related biochemical data, we present probable models for the architectural arrangement of transmembrane helices in this protein superfamily

    Cardiac p300 Is Involved in Myocyte Growth with Decompensated Heart Failure

    No full text
    A variety of stresses on the heart initiate a number of subcellular signaling pathways, which finally reach the nuclei of cardiac myocytes and cause myocyte hypertrophy with heart failure. However, common nuclear pathways that lead to this state are unknown. A zinc finger protein, GATA-4, is one of the transcription factors that mediate changes in gene expression during myocardial-cell hypertrophy. p300 not only acts as a transcriptional coactivator of GATA-4, but also possesses an intrinsic histone acetyltransferase activity. In primary cardiac myocytes derived from neonatal rats, we show that stimulation with phenylephrine increased an acetylated form of GATA-4 and its DNA-binding activity, as well as expression of p300. A dominant-negative mutant of p300 suppressed phenylephrine-induced nuclear acetylation, activation of GATA-4-dependent endothelin-1 promoters, and hypertrophic responses, such as increase in cell size and sarcomere organization. In sharp contrast to the activation of cardiac MEK-1, which phosphorylates GATA-4 and causes compensated hypertrophy in vivo, p300-mediated acetylation of mouse cardiac nuclear proteins, including GATA-4, results in marked eccentric dilatation and systolic dysfunction. These findings suggest that p300-mediated nuclear acetylation plays a critical role in the development of myocyte hypertrophy and represents a pathway that leads to decompensated heart failure
    corecore