3,330 research outputs found
Dual-Frequency VSOP Observations of AO 0235+164
AO 0235+164 is a very compact, flat spectrum radio source identified as a BL
Lac object at a redshift of z=0.94. It is one of the most violently variable
extragalactic objects at both optical and radio wavelengths. The radio
structure of the source revealed by various ground-based VLBI observations is
dominated by a nearly unresolved compact component at almost all available
frequencies.
Dual-frequency space VLBI observations of AO 0235+164 were made with the VSOP
mission in January-February 1999. The array of the Japanese HALCA satellite and
co-observing ground radio telescopes in Australia, Japan, China and South
Africa allowed us to study AO 0235+164 with an unprecedented angular resolution
at frequencies of 1.6 and 5 GHz. We report on the sub-milliarcsecond structural
properties of the source. The 5-GHz observations led to an estimate of T_B >
5.8 x 10^{13} K for the rest-frame brightness temperature of the core, which is
the highest value measured with VSOP to date.Comment: 8 pages, 8 figures, to appear in Publ. Astron. Soc. Japa
Measuring the brightness temperature distribution of extragalactic radio sources with space VLBI
We have used VSOP space very long baseline interferometry observations to
measure the brightness temperature distribution of a well-defined sub-set of
the Pearson-Readhead sample of extragalactic radio sources. VLBI which is
restricted to Earth-diameter baselines is not generally sensitive to emitting
regions with brightness temperatures greater than approximately K,
coincidentally close to theoretical estimates of brightness temperature limits,
K. We find that a significant proportion of our sample have
brightness temperatures greater than K; many have unresolved
components on the longest baselines, and some remain completely unresolved.
These observations begin to bridge the gap between the extended jets seen with
ground-based VLBI and the microarcsecond structures inferred from intraday
variability, evidenced here by the discovery of a relationship between intraday
variability and VSOP-measured brightness temperature, likely due to the effects
of relativistic beaming. Also, lower limits on jet Lorentz factors, estimated
from space VLBI observations, are starting to challenge numerical simulations
that predict low Lorentz factor jets.Comment: 4 pages + 1 figure, ApJ letters, accepte
High Precision CTE-Measurement of SiC-100 for Cryogenic Space-Telescopes
We present the results of high precision measurements of the thermal
expansion of the sintered SiC, SiC-100, intended for use in cryogenic
space-telescopes, in which minimization of thermal deformation of the mirror is
critical and precise information of the thermal expansion is needed for the
telescope design. The temperature range of the measurements extends from room
temperature down to 10 K. Three samples, #1, #2, and #3 were
manufactured from blocks of SiC produced in different lots. The thermal
expansion of the samples was measured with a cryogenic dilatometer, consisting
of a laser interferometer, a cryostat, and a mechanical cooler. The typical
thermal expansion curve is presented using the 8th order polynomial of the
temperature. For the three samples, the coefficients of thermal expansion
(CTE), \bar{\alpha}_{#1}, \bar{\alpha}_{#2}, and \bar{\alpha}_{#3} were
derived for temperatures between 293 K and 10 K. The average and the dispersion
(1 rms) of these three CTEs are 0.816 and 0.002 (/K),
respectively. No significant difference was detected in the CTE of the three
samples from the different lots. Neither inhomogeneity nor anisotropy of the
CTE was observed. Based on the obtained CTE dispersion, we performed an
finite-element-method (FEM) analysis of the thermal deformation of a 3.5 m
diameter cryogenic mirror made of six SiC-100 segments. It was shown that the
present CTE measurement has a sufficient accuracy well enough for the design of
the 3.5 m cryogenic infrared telescope mission, the Space Infrared telescope
for Cosmology and Astrophysics (SPICA).Comment: in press, PASP. 21 pages, 4 figure
Improving the snow physics of WEB-DHM and its point evaluation at the SnowMIP sites
In this study, the snow physics of a distributed biosphere hydrological model, referred to as the Water and Energy Budget based Distributed Hydrological Model (WEB-DHM) is significantly improved by incorporating the three-layer physically based energy balance snowmelt model of Simplified Simple Biosphere 3 (SSiB3) and the Biosphere-Atmosphere Transfer Scheme (BATS) albedo scheme. WEB-DHM with improved snow physics is hereafter termed WEB-DHM-S. Since the in-situ observations of spatially-distributed snow variables with high resolution are currently not available over large regions, the new distributed system (WEB-DHM-S) is at first rigorously tested with comprehensive point measurements. The stations used for evaluation comprise the four open sites of the Snow Model Intercomparison Project (SnowMIP) phase 1 with different climate characteristics (Col de Porte in France, Weissfluhjoch in Switzerland, Goose Bay in Canada and Sleepers River in USA) and one open/forest site of the SnowMIP phase 2 (Hitsujigaoka in Japan). The comparisons of the snow depth, snow water equivalent, surface temperature, snow albedo and snowmelt runoff at the SnowMIP1 sites reveal that WEB-DHM-S, in general, is capable of simulating the internal snow process better than the original WEB-DHM. Sensitivity tests (through incremental addition of model processes) are performed to illustrate the necessity of improvements over WEB-DHM and indicate that both the 3-layer snow module and the new albedo scheme are essential. The canopy effects on snow processes are studied at the Hitsujigaoka site of the SnowMIP2 showing that the snow holding capacity of the canopy plays a vital role in simulating the snow depth on ground. Through these point evaluations and sensitivity studies, WEB-DHM-S has demonstrated the potential to address basin-scale snow processes (e.g., the snowmelt runoff), since it inherits the distributed hydrological framework from the WEB-DHM (e.g., the slope-driven runoff generation with a grid-hillslope scheme, and the flow routing in the river network)
- …
