6 research outputs found

    Detection of abnormal myocardial deformation during acute myocardial ischemia using three-dimensional speckle tracking echocardiography

    Full text link
    Background: Three-dimensional (3D) speckle tracking echocardiography can simultaneously evaluate circumferential, longitudinal, and radial strain without being affected by through-plane motion. Moreover, the assessment of area change ratio may allow measuring regional myocardial deformation more accurately. We investigated the changes in each deformation parameter during acute coronary flow reduction, and evaluated whether the spatial extent of the abnormal values in each deformation parameter corresponded to that of the perfusion abnormality. Methods: In 10 dogs, myocardial strains of three directions and area change ratio were analyzed at baseline and during three different ischemic conditions. The peak systolic value and the post-systolic index (PSI) were measured in both the ischemic and normal segments. The function abnormality, derived from the deformation parameter, and the perfusion abnormality, derived from Evans blue staining, were evaluated in each segment during complete occlusion and the concordance rate between both abnormalities was calculated. Results: In all deformation parameters, the peak systolic value tended to gradually decrease and the PSI tended to gradually increase with the severity of flow reduction in the ischemic segment. Especially in area change ratio, significant changes were observed in both the peak systolic value and the PSI during occlusion compared to baseline. The concordance rate was the highest in the PSI assessed by area change ratio. Conclusions: Among 3D myocardial deformation parameters, area change ratio demonstrated better detectability of acute coronary flow reduction than conventional strain components. Area change ratio may be a useful parameter for detecting acute ischemia by 3D speckle tracking echocardiography.This is a post-peer-review, pre-copyedit version of an article published in Journal of Echocardiography. The final authenticated version is available online at: http://dx.doi.org/10.1007/s12574-019-00449-6.https://doi.org/10.1007/s12574-019-00449-

    Myocardial layer-specific analysis of ischemic memory using speckle tracking echocardiography

    Full text link
    The assessment of post-systolic shortening (PSS) by speckle tracking echocardiography allows myocardial ischemic memory imaging. Because the endocardial layer is more vulnerable to ischemia, the assessment of this layer might be useful for detecting ischemic memory. Serial echocardiographic data were acquired from nine dogs with 2 min of coronary occlusion followed by reperfusion. Regional deformation parameters were measured in the risk and normal areas. Using speckle tracking echocardiography, circumferential strain was analyzed in the endocardial, mid-wall, and epicardial layers; and radial strain was analyzed in the inner half, outer half and entire (transmural) layers. In the risk area, peak systolic and end-systolic strain in the circumferential and radial directions significantly decreased during occlusion, but recovered to the baseline levels immediately after reperfusion in all layers. However, circumferential post-systolic strain index (PSI), a parameter of PSS, significantly increased during occlusion, and the significant increases persisted until 20 min after reperfusion in the endocardial and mid-wall layers. Radial PSI tended to increase after reperfusion in the inner half and entire layers but these increases were not significant compared with baseline. In the normal area, systolic strains and PSI in the radial and circumferential directions hardly changed before and after occlusion/reperfusion in all layers. In layer-specific analysis with speckle tracking echocardiography, circumferential PSS in the endocardial and mid-wall layers may be useful for detecting ischemic memory. © 2014 Springer Science+Business Media.This is a post-peer-review, pre-copyedit version of an article published in International Journal of Cardiovascular Imaging. The final authenticated version is available online at: https://doi.org/10.1007/s10554-014-0388-x

    Rubicon-regulated beta-1 adrenergic receptor recycling protects the heart from pressure overload

    No full text
    Heart failure has high morbidity and mortality in the developed countries. Autophagy is important for the quality control of proteins and organelles in the heart. Rubicon (Run domain Beclin-1-interacting and cysteine-rich domain-containing protein) has been identified as a potent negative regulator of autophagy and endolysosomal trafficking. The aim of this study was to investigate the in vivo role of Rubicon-mediated autophagy and endosomal trafficking in the heart. We generated cardiomyocyte-specific Rubicon-deficient mice and subjected the mice to pressure overload by means of transverse aortic constriction. Rubicon-deficient mice showed heart failure with left ventricular dilatation, systolic dysfunction and lung congestion one week after pressure overload. While autophagic activity was unchanged, the protein amount of beta-1 adrenergic receptor was decreased in the pressure-overloaded Rubicon-deficient hearts. The increases in heart rate and systolic function by beta-1 adrenergic stimulation were significantly attenuated in pressure-overloaded Rubicon-deficient hearts. In isolated rat neonatal cardiomyocytes, the downregulation of the receptor by beta-1 adrenergic agonist was accelerated by knockdown of Rubicon through the inhibition of recycling of the receptor. Taken together, Rubicon protects the heart from pressure overload. Rubicon maintains the intracellular recycling of beta-1 adrenergic receptor, which might contribute to its cardioprotective effect
    corecore