392 research outputs found

    Increased production of viral proteins by a 3'-LTR-deleted infectious clone of human T-cell leukemia virus type 1

    Get PDF
    We previously reported that a full-length provirus of HTLV-1 was directly constructed from the HTLV-1-transformed cell line MT-2 using overlapping polymerase chain reaction (PCR) and cloned into a plasmid vector (pFL-MT2). 293T cells transfected with pFL-MT2 alone did not produce virus particles because there was no expression of the viral transactivator protein Tax, whereas cells transfected with pFL-MT2 plus a Tax expression vector produced virus-like particles. In the process of constructing the HTLV-1 provirus by overlapping PCR, we also constructed an incomplete molecular clone, in which the 3' long terminal repeat (LTR) was replaced with the endogenous human gene, which resulted in the expression of a tax gene shorter by 43 bp. This incomplete molecular clone alone expressed Tax and produced the viral protein in transfected cells. Various clones were then constructed with different lengths of the 3' LTR and lacking the reverse-direction TATA box. The clones contained over 113 bp of the 3' LTR, with no reverse-direction TATA box, which might express the full-length tax gene, and did not produce the viral antigen. These results suggest that Tax in which the C-terminal portion is deleted is more strongly expressed than the wild-type protein and has transcriptional activity

    The HBZ gene, a key player in HTLV-1 pathogenesis

    Get PDF
    Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia/lymphoma (ATL) and is also associated with a variety of lymphocyte-mediated diseases. The HTLV-1 basic leucine zipper (HBZ) gene, found to be consistently expressed in ATL, has recently been the subject of intensive research efforts. In this review, we summarize recent findings about HBZ and discuss its roles and functions not only in the virus life cycle, but also in HTLV-1 disease pathogenesis

    In vivo expression of the HBZ gene of HTLV-1 correlates with proviral load, inflammatory markers and disease severity in HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recently, human T-cell leukemia virus type 1 (HTLV-1) basic leucine zipper factor (HBZ), encoded from a minus strand mRNA was discovered and was suggested to play an important role in adult T cell leukemia (ATL) development. However, there have been no reports on the role of HBZ in patients with HTLV-1 associated inflammatory diseases.</p> <p>Results</p> <p>We quantified the HBZ and tax mRNA expression levels in peripheral blood from 56 HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients, 10 ATL patients, 38 healthy asymptomatic carriers (HCs) and 20 normal uninfected controls, as well as human leukemic T-cell lines and HTLV-1-infected T-cell lines, and the data were correlated with clinical parameters. The spliced HBZ gene was transcribed in all HTLV-1-infected individuals examined, whereas tax mRNA was not transcribed in significant numbers of subjects in the same groups. Although the amount of HBZ mRNA expression was highest in ATL, medium in HAM/TSP, and lowest in HCs, with statistical significance, neither tax nor the HBZ mRNA expression per HTLV-1-infected cell differed significantly between each clinical group. The HTLV-1 HBZ, but not tax mRNA load, positively correlated with disease severity and with neopterin concentration in the cerebrospinal fluid of HAM/TSP patients. Furthermore, HBZ mRNA expression per HTLV-1-infected cell was decreased after successful immunomodulatory treatment for HAM/TSP.</p> <p>Conclusion</p> <p>These findings suggest that <it>in vivo </it>expression of HBZ plays a role in HAM/TSP pathogenesis.</p

    Establishment of the milk-borne transmission as a key factor for the peculiar endemicity of human T-lymphotropic virus type 1 (HTLV-1): the ATL Prevention Program Nagasaki

    Get PDF
    In late 2010, the nation-wide screening of pregnant women for human T-lymphotropic virus type 1 (HTLV-1) infection was implemented in Japan to prevent milk-borne transmission of HTLV-1. In the late 1970s, recognition of the adult T-cell leukemia (ATL) cluster in Kyushu, Japan, led to the discovery of the first human retrovirus, HTLV-1. In 1980, we started to investigate mother-to-child transmission (MTCT) for explaining the peculiar endemicity of HTLV-1. Retrospective and prospective epidemiological data revealed the MTCT rate at ∼20%. Cell-mediated transmission of HTLV-1 without prenatal infection suggested a possibility of milk-borne transmission. Common marmosets were successfully infected by oral inoculation of HTLV-1 harboring cells. A prefecture-wide intervention study to refrain from breast-feeding by carrier mothers, the ATL Prevention Program Nagasaki, was commenced in July 1987. It revealed a marked reduction of HTLV-1 MTCT by complete bottle-feeding from 20.3% to 2.5%, and a significantly higher risk of short-term breast-feeding (<6 months) than bottle-feeding (7.4% vs. 2.5%, P < 0.001)

    A historical reflection on the discovery of human retroviruses

    Get PDF
    The discovery of HIV-1 as the cause of AIDS was one of the major scientific achievements during the last century. Here the events leading to this discovery are reviewed with particular attention to priority and actual contributions by those involved. Since I would argue that discovering HIV was dependent on the previous discovery of the first human retrovirus HTLV-I, the history of this discovery is also re-examined. The first human retroviruses (HTLV-I) was first reported by Robert C. Gallo and coworkers in 1980 and reconfirmed by Yorio Hinuma and coworkers in 1981. These discoveries were in turn dependent on the previous discovery by Gallo and coworkers in 1976 of interleukin 2 or T-cell growth factor as it was called then. HTLV-II was described by Gallo's group in 1982. A human retrovirus distinct from HTLV-I and HTLV-II in that it was shown to have the morphology of a lentivirus was in my mind described for the first time by Luc Montagnier in an oral presentation at Cold Spring Harbor in September of 1983. This virus was isolated from a patient with lymphadenopathy using the protocol previously described for HTLV by Gallo. The first peer reviewed paper by Montagnier's group of such a retrovirus, isolated from two siblings of whom one with AIDS, appeared in Lancet in April of 1984. However, the proof that a new human retrovirus (HIV-1) was the cause of AIDS was first established in four publications by Gallo's group in the May 4th issue of Science in 1984

    Expression of a protein involved in bone resorption, Dkk1, is activated by HTLV-1 bZIP factor through its activation domain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human T-cell leukemia virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia, a malignancy characterized by uncontrolled proliferation of virally-infected CD4+ T-cells. Hypercalcemia and bone lesions due to osteoclast-mediated bone resorption are frequently associated with more aggressive forms of the disease. The HTLV-1 provirus contains a unique antisense gene that expresses HTLV-1 basic leucine zipper (bZIP) factor (HBZ). HBZ is localized to the nucleus where it regulates levels of transcription by binding to certain cellular transcriptional regulators. Among its protein targets, HBZ forms a stable complex with the homologous cellular coactivators, p300 and CBP, which is modulated through two N-terminal LXXLL motifs in the viral protein and the conserved KIX domain in the coactivators.</p> <p>Results</p> <p>To determine the effects of these interactions on transcription, we performed a preliminary microarray analysis, comparing levels of gene expression in cells with wild-type HBZ versus cells with HBZ mutated in its LXXLL motifs. <it>DKK1</it>, which encodes the secreted Wnt signaling inhibitor, Dickkopf-1 (Dkk1), was confirmed to be transcriptionally activated by HBZ, but not its mutant. Dkk1 plays a major role in the development of bone lesions caused by multiple myeloma. In parallel with the initial findings, activation of Dkk1 expression by HBZ was abrogated by siRNA-mediated knockdown of p300/CBP or by a truncated form of p300 containing the KIX domain. Among HTLV-1-infected T-cell lines tested, the detection of Dkk1 mRNA partially correlated with a threshold level of HBZ mRNA. In addition, an uninfected and an HTLV-1-infected T-cell line transfected with an HBZ expression vector exhibited <it>de novo </it>and increased DKK1 transcription, respectively. In contrast to HBZ, The HTLV-1 Tax protein repressed Dkk1 expression.</p> <p>Conclusions</p> <p>These data indicate that HBZ activates Dkk1 expression through its interaction with p300/CBP. However, this effect is limited in HTLV-1-infected T-cell lines, which in part, may be due to suppression of Dkk1 expression by Tax. Consequently, the ability of HBZ to regulate expression of Dkk1 and possibly other cellular genes may only be significant during late stages of ATL, when Tax expression is repressed.</p

    Thioredoxin-binding protein-2 (TBP-2/VDUP1/TXNIP) regulates T-cell sensitivity to glucocorticoid during HTLV-I-induced transformation

    Get PDF
    Although glucocorticoid (GC) is widely used for treating hematopoietic malignancies including adult T-cell leukemia (ATL), the mechanism by which leukemic cells become resistant to GC in the clinical course remains unclear. Using a series of T-cell lines infected with human T lymphotropic virus type-I (HTLV-I), the causative virus of ATL, we have dissected the transformation from interleukin (IL)-2-dependent to -independent growth stage. The transformation associates the loss of thioredoxin-binding protein-2 (TBP-2), a tumor suppressor and regulator of lipid metabolism. Here we show that TBP-2 is responsible for GC-induced apoptosis in ATL cells. In the IL-2-dependent stage, dexamethasone induced TBP-2 expression and apoptosis, both of which were blocked by GC receptor (GR) antagonist RU486. Knockdown of TBP-2 consistently reduced the amount of GC-induced apoptosis. In IL-2-independent stage, however, expression of GR and TBP-2 was suppressed and GC failed to induce apoptosis. Forced expression of GR led the cells to mild sensitivity to GC, which was also accomplished by treatment with suberoylanilide hydroxamic acid, a TBP-2 inducer. A transfection experiment showed that TBP-2 expression induced apoptosis in IL-2-independent ATL cells. Thus, TBP-2 is likely to be one of the key molecules for GC-induced apoptosis and a potential target for treating the advanced stage of ATL
    corecore