34 research outputs found

    Indices calculated by serum creatinine and cystatin C as predictors of liver damage, muscle strength and sarcopenia in liver disease

    Get PDF
    Serum creatinine (Cr)-based glomerular filtration rate (CrGFR) is overestimated in liver disease. The present study evaluated whether the difference in CrGFR and cystatin C (CysC) GFR (dGFR) is significant in liver disease. The Cr-to-CysC ratio and sarcopenia index (SI) have been reported to correlate with muscle volume. An estimated total body muscle mass with Cr, CysC and calculated body muscle mass (CBMM) has also been reported to correlate with muscle mass. The applicability of dGFR, SI and CBMM for liver disease were evaluated. A total of 313 patients with liver damage were evaluated for Child-Pugh score, albumin-bilirubin (ALBI) score, model for end-stage liver disease, fibrosis-4, Cr, CysC, Cr-based estimated GFR (CreGFR), CysCGFR and grip strength. Of the 313 patients, 199 were evaluated using cross-sectional computed tomography (CT) of the third lumbar vertebra to determine the skeletal muscle (SM) mass. dGFR, CBMM and SI were compared to liver damage, muscle strength and muscle mass. In the 313 patients, dGFR was correlated with age, ALBI and grip strength; CBMM was correlated with body mass index (BMI) and grip strength; and SI was correlated with BMI and grip strength. In patients evaluated with CT, the correlation coefficients for CBMM and SI with SM were 0.804 and 0.293, respectively. Thus, CBMM and SI were associated with sarcopenia. The relationship between dGFR and ALBI does not differ with different grades of CrGFR-based chronic kidney disease (CKD). dGFR is a marker of liver damage and muscle strength regardless of CKD. CBMM and SI are markers for sarcopenia in liver disease

    Fundamental physics activities with pulsed neutron at J-PARC(BL05)

    Full text link
    "Neutron Optics and Physics (NOP/ BL05)" at MLF in J-PARC is a beamline for studies of fundamental physics. The beamline is divided into three branches so that different experiments can be performed in parallel. These beam branches are being used to develop a variety of new projects. We are developing an experimental project to measure the neutron lifetime with total uncertainty of 1 s (0.1%). The neutron lifetime is an important parameter in elementary particle and astrophysics. Thus far, the neutron lifetime has been measured by several groups; however, different values are obtained from different measurement methods. This experiment is using a method with different sources of systematic uncertainty than measurements conducted to date. We are also developing a source of pulsed ultra-cold neutrons (UCNs) produced from a Doppler shifter are available at the unpolarized beam branch. We are developing a time focusing device for UCNs, a so called "rebuncher", which can increase UCN density from a pulsed UCN source. At the low divergence beam branch, an experiment to search an unknown intermediate force with nanometer range is performed by measuring the angular dependence of neutron scattering by noble gases. Finally the beamline is also used for the research and development of optical elements and detectors. For example, a position sensitive neutron detector that uses emulsion to achieve sub-micrometer resolution is currently under development. We have succeeded in detecting cold and ultra-cold neutrons using the emulsion detector.Comment: 9 pages, 5 figures, Proceedings of International Conference on Neutron Optics (NOP2017

    Recent Results from LHD Experiment with Emphasis on Relation to Theory from Experimentalist’s View

    Get PDF
    he Large Helical Device (LHD) has been extending an operational regime of net-current free plasmas towardsthe fusion relevant condition with taking advantage of a net current-free heliotron concept and employing a superconducting coil system. Heating capability has exceeded 10 MW and the central ion and electron temperatureshave reached 7 and 10 keV, respectively. The maximum value of β and pulse length have been extended to 3.2% and 150 s, respectively. Many encouraging physical findings have been obtained. Topics from recent experiments, which should be emphasized from the aspect of theoretical approaches, are reviewed. Those are (1) Prominent features in the inward shifted configuration, i.e., mitigation of an ideal interchange mode in the configuration with magnetic hill, and confinement improvement due to suppression of both anomalous and neoclassical transport, (2) Demonstration ofbifurcation of radial electric field and associated formation of an internal transport barrier, and (3) Dynamics of magnetic islands and clarification of the role of separatrix

    Absorber-free laser beam welding of transparent thermoplastics

    No full text

    The Sweat Bee Lasioglossum occidens

    No full text
    corecore