655 research outputs found
Sect and House in Syria: History, Architecture, and Bayt Amongst the Druze in Jaramana
This paper explores the connections between the architecture and materiality of houses and the social idiom of bayt (house, family). The ethnographic exploration is located in the Druze village of Jaramana, on the outskirts of the Syrian capital Damascus. It traces the histories, genealogies, and politics of two families, bayt Abud-Haddad and bayt Ouward, through their houses. By exploring the two families and the architecture of their houses, this paper provides a detailed ethnographic account of historical change in modern Syria, internal diversity, and stratification within the intimate social fabric of the Druze neighbourhood at a time of war, and contributes a relational approach to the anthropological understanding of houses
PNAS plus: plasmodium falciparum responds to amino acid starvation by entering into a hibernatory state
The human malaria parasite Plasmodium falciparum is auxotrophic for most amino acids. Its amino acid needs are met largely through the degradation of host erythrocyte hemoglobin; however the parasite must acquire isoleucine exogenously, because this amino acid is not present in adult human hemoglobin. We report that when isoleucine is withdrawn from the culture medium of intraerythrocytic P. falciparum, the parasite slows its metabolism and progresses through its developmental cycle at a reduced rate. Isoleucine-starved parasites remain viable for 72 h and resume rapid growth upon resupplementation. Protein degradation during starvation is important for maintenance of this hibernatory state. Microarray analysis of starved parasites revealed a 60% decrease in the rate of progression through the normal transcriptional program but no other apparent stress response. Plasmodium parasites do not possess a TOR nutrient-sensing pathway and have only a rudimentary amino acid starvation-sensing eukaryotic initiation factor 2α (eIF2α) stress response. Isoleucine deprivation results in GCN2-mediated phosphorylation of eIF2α, but kinase-knockout clones still are able to hibernate and recover, indicating that this pathway does not directly promote survival during isoleucine starvation. We conclude that P. falciparum, in the absence of canonical eukaryotic nutrient stress-response pathways, can cope with an inconsistent bloodstream amino acid supply by hibernating and waiting for more nutrient to be provided
An insight into the sialome of the oriental rat flea, Xenopsylla cheopis (Rots)
<p>Abstract</p> <p>Background</p> <p>The salivary glands of hematophagous animals contain a complex cocktail that interferes with the host hemostasis and inflammation pathways, thus increasing feeding success. Fleas represent a relatively recent group of insects that evolved hematophagy independently of other insect orders.</p> <p>Results</p> <p>Analysis of the salivary transcriptome of the flea <it>Xenopsylla cheopis</it>, the vector of human plague, indicates that gene duplication events have led to a large expansion of a family of acidic phosphatases that are probably inactive, and to the expansion of the FS family of peptides that are unique to fleas. Several other unique polypeptides were also uncovered. Additionally, an apyrase-coding transcript of the CD39 family appears as the candidate for the salivary nucleotide hydrolysing activity in <it>X.cheopis</it>, the first time this family of proteins is found in any arthropod salivary transcriptome.</p> <p>Conclusion</p> <p>Analysis of the salivary transcriptome of the flea <it>X. cheopis </it>revealed the unique pathways taken in the evolution of the salivary cocktail of fleas. Gene duplication events appear as an important driving force in the creation of salivary cocktails of blood feeding arthropods, as was observed with ticks and mosquitoes. Only five other flea salivary sequences exist at this time at NCBI, all from the cat flea <it>C. felis</it>. This work accordingly represents the only relatively extensive sialome description of any flea species. Sialotranscriptomes of additional flea genera will reveal the extent that these novel polypeptide families are common throughout the Siphonaptera.</p
Quantitative principles of cis-translational control by general mRNA sequence features in eukaryotes.
BackgroundGeneral translational cis-elements are present in the mRNAs of all genes and affect the recruitment, assembly, and progress of preinitiation complexes and the ribosome under many physiological states. These elements include mRNA folding, upstream open reading frames, specific nucleotides flanking the initiating AUG codon, protein coding sequence length, and codon usage. The quantitative contributions of these sequence features and how and why they coordinate to control translation rates are not well understood.ResultsHere, we show that these sequence features specify 42-81% of the variance in translation rates in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Arabidopsis thaliana, Mus musculus, and Homo sapiens. We establish that control by RNA secondary structure is chiefly mediated by highly folded 25-60 nucleotide segments within mRNA 5' regions, that changes in tri-nucleotide frequencies between highly and poorly translated 5' regions are correlated between all species, and that control by distinct biochemical processes is extensively correlated as is regulation by a single process acting in different parts of the same mRNA.ConclusionsOur work shows that general features control a much larger fraction of the variance in translation rates than previously realized. We provide a more detailed and accurate understanding of the aspects of RNA structure that directs translation in diverse eukaryotes. In addition, we note that the strongly correlated regulation between and within cis-control features will cause more even densities of translational complexes along each mRNA and therefore more efficient use of the translation machinery by the cell
Gut microbiota-derived propionate reduces cancer cell proliferation in the liver
Peer reviewedPublisher PD
The battle over Syria's reconstruction
Reconstruction is becoming the new battleground in the Syrian conflict—its continuation by other means. It is instrumentalized by the regime as a way to reconsolidate its control over the country and by rival regional and international powers to shape the internal balance of power and establish spheres of influence in the country. The paper examines the Asad regime’s practices, including co-optation of militia leaders via reconstruction concessions and use of reconstruction to clear strategic areas of opposition-dominated urban settlements. The paper then surveys how the geopolitical struggle in Syria has produced an asymmetry as regards reconstruction: those powers that lost the geo-political contest on the ground seek to use geo-economic superiority to reverse the geo-political outcome. Then the impact of proxy wars and spheres of influence in the country on the security context for reconstruction is examined. Finally, the reconstruction initiatives of the various external parties are assessed, including Russia, Iran and Turkey as well as the spoiler role by which the US seeks to obstruct reconstruction that would spell victory in Syria for its Russian and Iranian rivals.PostprintPeer reviewe
Activation of PKR Causes Amyloid ß-Peptide Accumulation via De-Repression of BACE1 Expression
BACE1 is a key enzyme involved in the production of amyloid ß-peptide (Aß) in Alzheimer's disease (AD) brains. Normally, its expression is constitutively inhibited due to the presence of the 5′untranslated region (5′UTR) in the BACE1 promoter. BACE1 expression is activated by phosphorylation of the eukaryotic initiation factor (eIF)2-alpha, which reverses the inhibitory effect exerted by BACE1 5′UTR. There are four kinases associated with different types of stress that could phosphorylate eIF2-alpha. Here we focus on the double-stranded (ds) RNA-activated protein kinase (PKR). PKR is activated during viral infection, including that of herpes simplex virus type 1 (HSV1), a virus suggested to be implicated in the development of AD, acting when present in brains of carriers of the type 4 allele of the apolipoprotein E gene. HSV1 is a dsDNA virus but it has genes on both strands of the genome, and from these genes complementary RNA molecules are transcribed. These could activate BACE1 expression by the PKR pathway. Here we demonstrate in HSV1-infected neuroblastoma cells, and in peripheral nervous tissue from HSV1-infected mice, that HSV1 activates PKR. Cloning BACE1 5′UTR upstream of a luciferase (luc) gene confirmed its inhibitory effect, which can be prevented by salubrinal, an inhibitor of the eIF2-alpha phosphatase PP1c. Treatment with the dsRNA analog poly (I∶C) mimicked the stimulatory effect exerted by salubrinal over BACE1 translation in the 5′UTR-luc construct and increased Aß production in HEK-APPsw cells. Summarizing, our data suggest that PKR activated in brain by HSV1 could play an important role in the development of AD
Effects of high-amylose maize starch and butyrylated high-amylose maize starch on azoxymethane-induced intestinal cancer in rats
Colorectal cancer (CRC) is a major cause of death worldwide. Studies suggest that dietary fibre offers protection perhaps by increasing colonic fermentative production of butyrate. This study examined the importance of butyrate by investigating the effects of resistant starch (RS) and butyrylated-RS on azoxymethane (AOM)-induced CRC in rats. Four groups (n = 30 per group) of Sprague–Dawley rats were fed AIN-93G-based diets containing a standard low-RS maize starch (LAMS), LAMS + 3% tributyrin (LAMST), 10% high-amylose maize starch (HAMS) and 10% butyrylated HAMS (HAMSB) for 4 weeks. Rats were injected once weekly for 2 weeks with 15 mg/kg AOM, maintained on diets for 25 weeks and then killed. Butyrate concentrations in large bowel digesta were higher in rats fed HAMSB than other groups (P < 0.001); levels were similar in HAMS, LAMS and LAMST groups. The proportion of rats developing tumours were lower in HAMS and HAMSB than LAMS (P < 0.05), and the number of tumours per rat were lower in HAMSB than LAMS (P < 0.05). Caecal digesta butyrate pools and concentrations were negatively correlated with tumour size (P < 0.05). Hepatic portal plasma butyrate concentrations were higher (P < 0.001) in the HAMSB compared with other groups and negatively correlated with tumour number per rat (P < 0.009) and total tumour size for each rat (P = 0.05). HAMSB results in higher luminal butyrate than RS alone or tributyrin. This is associated with reduced tumour incidence, number and size in this rat model of CRC supporting the important protective role of butyrate. Interventional strategies designed to maximize luminal butyrate may be of protective benefit in humans
Fluorescence-Tagged Transgenic Lines Reveal Genetic Defects in Pollen Growth—Application to the Eif3 Complex
BACKGROUND: Mutations in several subunits of eukaryotic translation initiation factor 3 (eIF3) cause male transmission defects in Arabidopsis thaliana. To identify the stage of pollen development at which eIF3 becomes essential it is desirable to examine viable pollen and distinguish mutant from wild type. To accomplish this we have developed a broadly applicable method to track mutant alleles that are not already tagged by a visible marker gene through the male lineage of Arabidopsis. METHODOLOGY/PRINCIPAL FINDINGS: Fluorescence tagged lines (FTLs) harbor a transgenic fluorescent protein gene (XFP) expressed by the pollen-specific LAT52 promoter at a defined chromosomal position. In the existing collection of FTLs there are enough XFP marker genes to track nearly every nuclear gene by virtue of its genetic linkage to a transgenic marker gene. Using FTLs in a quartet mutant, which yields mature pollen tetrads, we determined that the pollen transmission defect of the eif3h-1 allele is due to a combination of reduced pollen germination and reduced pollen tube elongation. We also detected reduced pollen germination for eif3e. However, neither eif3h nor eif3e, unlike other known gametophytic mutations, measurably disrupted the early stages of pollen maturation. CONCLUSION/SIGNIFICANCE: eIF3h and eIF3e both become essential during pollen germination, a stage of vigorous translation of newly transcribed mRNAs. These data delimit the end of the developmental window during which paternal rescue is still possible. Moreover, the FTL collection of mapped fluorescent protein transgenes represents an attractive resource for elucidating the pollen development phenotypes of any fine-mapped mutation in Arabidopsis
Protective Coupling of Mitochondrial Function and Protein Synthesis via the eIF2α Kinase GCN-2
Cells respond to defects in mitochondrial function by activating signaling pathways that restore homeostasis. The mitochondrial peptide exporter HAF-1 and the bZip transcription factor ATFS-1 represent one stress response pathway that regulates the transcription of mitochondrial chaperone genes during mitochondrial dysfunction. Here, we report that GCN-2, an eIF2α kinase that modulates cytosolic protein synthesis, functions in a complementary pathway to that of HAF-1 and ATFS-1. During mitochondrial dysfunction, GCN-2–dependent eIF2α phosphorylation is required for development as well as the lifespan extension observed in Caenorhabditis elegans. Reactive oxygen species (ROS) generated from dysfunctional mitochondria are required for GCN-2–dependent eIF2α phosphorylation but not ATFS-1 activation. Simultaneous deletion of ATFS-1 and GCN-2 compounds the developmental defects associated with mitochondrial stress, while stressed animals lacking GCN-2 display a greater dependence on ATFS-1 and stronger induction of mitochondrial chaperone genes. These findings are consistent with translational control and stress-dependent chaperone induction acting in complementary arms of the UPRmt
- …