124 research outputs found

    Effect of cyclosporin A on proteinuria in the course of glomerulopathy associated with WT1 mutations

    Get PDF
    Denys–Drash syndrome (DDS) is characterized by progressive glomerulopathy caused by diffuse mesangial sclerosis (DMS), genitourinary defects, and a higher risk of developing Wilms’ tumor. It is commonly assumed that the DMS is unresponsive to any medications. In this report, we present a patient with Denys–Drash syndrome, in whom the cyclosporine A (CsA) was found to induce total remission. This observation and observations of other authors confirm that in genetic forms of nephrotic syndrome, the proteinuric effect of CsA may be due to a non-immunologic mechanism. We confirm the beneficial effect of CsA treatment in DDS; however, the potential nephrotoxicity of this drug will probably not allow long-term use

    Teaching molecular genetics: chapter 4—positional cloning of genetic disorders

    Get PDF
    Positional cloning is the approach of choice for the identification of genetic mutations underlying the pathological development of diseases with simple Mendelian inheritance. It consists of different consecutive steps, starting with recruitment of patients and DNA collection, that are critical to the overall process. A genetic analysis of the enrolled patients and their families is performed, based on genetic recombination frequencies generated by meiotic cross-overs and on genome-wide molecular studies, to define a critical DNA region of interest. This analysis culminates in a statistical estimate of the probability that disease features may segregate in the families independently or in association with specific molecular markers located in known regions. In this latter case, a marker can be defined as being linked to the disease manifestations. The genetic markers define an interval that is a function of their recombination frequencies with the disease, in which the disease gene is localised. The identification and characterisation of chromosome abnormalities as translocations, deletions and duplications by classical cytogenetic methods or by the newly developed microarray-based comparative genomic hybridisation (array CGH) technique may define extensions and borders of the genomic regions involved. The step following the definition of a critical genomic region is the identification of candidate genes that is based on the analysis of available databases from genome browsers. Positional cloning culminates in the identification of the causative gene mutation, and the definition of its functional role in the pathogenesis of the disorder, by the use of cell-based or animal-based experiments. More often, positional cloning ends with the generation of mice with homologous mutations reproducing the human clinical phenotype. Altogether, positional cloning has represented a fundamental step in the research on genetic renal disorders, leading to the definition of several disease mechanisms and allowing a proper diagnostic approach to many conditions

    Congenital nephrotic syndrome

    Get PDF
    Congenital nephrotic syndrome (CNS) is a rare kidney disorder characterized by heavy proteinuria, hypoproteinemia, and edema starting soon after birth. The majority of cases are caused by genetic defects in the components of the glomerular filtration barrier, especially nephrin and podocin. CNS may also be a part of a more generalized syndrome or caused by a perinatal infection. Immunosuppressive medication is not helpful in the genetic forms of CNS, and kidney transplantation is the only curative therapy. Before the operation, management of these infants largely depends on the magnitude of proteinuria. In severe cases, daily albumin infusions are required to prevent life-threatening edema. The therapy also includes hypercaloric diet, thyroxin and mineral substitution, prevention of thrombotic episodes, and prompt management of infectious complications. The outcome of CNS patients without major extrarenal manifestations is comparable with other patient groups after kidney transplantation

    Focal segmental glomerulosclerosis, Coats’-like retinopathy, sensorineural deafness and chromosome 4 duplication: a new association

    Get PDF
    We describe the novel association in a girl of nephrotic syndrome due to focal segmental glomerulosclerosis, bilateral sensorineural deafness, basal ganglia calcification, bilateral retinopathy similar to that seen in Coats’ disease, with de novo duplication of a subtelomeric region of chromosome 4q35. The chromosomal duplication was identified during investigation of a possible association with features of fascio-scapulo-humeral dystrophy (FSHD). This duplication has not previously been reported with FSGS and adds to the expanding number of genetic associations with steroid-resistant nephrotic syndrome

    The role of forensic anthropology in disaster victim identification (DVI):recent developments and future prospects

    Get PDF
    Forensic anthropological knowledge has been used in disaster victim identification (DVI) for over a century, but over the past decades, there have been a number of disaster events which have seen an increasing role for the forensic anthropologist. The experiences gained from some of the latest DVI operations have provided valuable lessons that have had an effect on the role and perceived value of the forensic anthropologist as part of the team managing the DVI process. This paper provides an overview of the ways in which forensic anthropologists may contribute to DVI with emphasis on how recent experiences and developments in forensic anthropology have augmented these contributions. Consequently, this paper reviews the value of forensic anthropological expertise at the disaster scene and in the mortuary, and discusses the way in which forensic anthropologists may use imaging in DVI efforts. Tissue-sampling strategies for DNA analysis, especially in the case of disasters with a large amount of fragmented remains, are also discussed. Additionally, consideration is given to the identification of survivors; the statistical basis of identification; the challenges related to some specific disaster scenarios; and education and training. Although forensic anthropologists can play a valuable role in different phases of a DVI operation, they never practice in isolation. The DVI process requires a multidisciplinary approach and, therefore, has a close collaboration with a range of forensic specialists

    Proline-rich antimicrobial peptide, PR-39 gene transduction altered invasive activity and actin structure in human hepatocellular carcinoma cells

    Get PDF
    PR-39 is an endogenous proline-rich antimicrobial peptide which induces the synthesis of syndecan-1, a transmembrane heparan sulphate proteoglycan involved in cell-to-matrix interactions and wound healing. Previously, we revealed that the expression of syndecan-1 was reduced in human hepatocellular carcinomas with high metastatic potential and speculated that syndecan-1 played an important role in inhibition of invasion and metastasis. It is assumed that a modification of this process with PR-39 and syndecan-1 may result in a new strategy by which it can inhibit the invasion and metastasis. Therefore, we transduced a gene of PR-39 into human hepatocellular carcinoma cell line HLF, which shows a low expression of syndecan-1 and a high in vitro invasive activity, and examined whether this procedure could reduce the invasive activity of tumour cells. In two transfectants with PR-39 gene, the syndecan-1 expression was induced and the invasive activity in type I collagen-coated chamber was inhibited. Moreover, these transfectants showed the suppression of motile activity assayed by phagokinetic tracks in addition to the disorganization of actin filaments observed by a confocal imaging system. In contrast, five transfectants with syndecan-1 gene in the HLF cells revealed suppression of invasive activity but did not alter the motile activity and actin structures of the cell. These results suggest that PR-39 has functions involved in the suppression of motile activity and alteration of actin structure on human hepatocellular carcinoma cells in addition to the suppression of invasive activity which might result from the induction of syndecan-1 expression. © 1999 Cancer Research Campaig

    Genetics of focal segmental glomerulosclerosis

    Get PDF
    The recent advances in understanding the pathophysiology of focal segmental glomerulosclerosis (FSGS) and molecular function of glomerular filtration barrier come directly from genetic linkage and positional cloning studies. The exact role and function of the newly discovered genes and proteins are being investigated by in vitro and in vivo mechanistic studies. Those genes and proteins interactions seem to change susceptibility to kidney disease progression. Better understanding of their exact role in the development of FSGS may influence future therapies and outcomes in this complex disease

    Phospholipase C-ε Regulates Epidermal Morphogenesis in Caenorhabditis elegans

    Get PDF
    Migration of cells within epithelial sheets is an important feature of embryogenesis and other biological processes. Previous work has demonstrated a role for inositol 1,4,5-trisphosphate (IP3)-mediated calcium signalling in the rearrangement of epidermal cells (also known as hypodermal cells) during embryonic morphogenesis in Caenorhabditis elegans. However the mechanism by which IP3 production is stimulated is unknown. IP3 is produced by the action of phospholipase C (PLC). We therefore surveyed the PLC family of C. elegans using RNAi and mutant strains, and found that depletion of PLC-1/PLC-ε produced substantial embryonic lethality. We used the epithelial cell marker ajm-1::gfp to follow the behaviour of epidermal cells and found that 96% of the arrested embryos have morphogenetic defects. These defects include defective ventral enclosure and aberrant dorsal intercalation. Using time-lapse confocal microscopy we show that the migration of the ventral epidermal cells, especially of the leading cells, is slower and often fails in plc-1(tm753) embryos. As a consequence plc-1 loss of function results in ruptured embryos with a Gex phenotype (gut on exterior) and lumpy larvae. Thus PLC-1 is involved in the regulation of morphogenesis. Genetic studies using gain- and loss-of-function alleles of itr-1, the gene encoding the IP3 receptor in C. elegans, demonstrate that PLC-1 acts through ITR-1. Using RNAi and double mutants to deplete the other PLCs in a plc-1 background, we show that PLC-3/PLC-γ and EGL-8/PLC-β can compensate for reduced PLC-1 activity. Our work places PLC-ε into a pathway controlling epidermal cell migration, thus establishing a novel role for PLC-ε

    Genome-wide association study for renal traits in the Framingham Heart and Atherosclerosis Risk in Communities Studies

    Get PDF
    Background: The Framingham Heart Study (FHS) recently obtained initial results from the first genome-wide association scan for renal traits. The study of 70,987 single nucleotide polymorphisms (SNPs) in 1,010 FHS participants provides a list of SNPs showing the strongest associations with renal traits which need to be verified in independent study samples. Methods: Sixteen SNPs were selected for replication based on the most promising associations with chronic kidney disease (CKD), estimated glomerular filtration rate (eGFR), and serum cystatin C in FHS. These SNPs were genotyped in 15,747 participants of the Atherosclerosis in Communities (ARIC) Study and evaluated for association using multivariable adjusted regression analyses. Primary outcomes in ARIC were CKD and eGFR. Secondary prospective analyses were conducted for association with kidney disease progression using multivariable adjusted Cox proportional hazards regression. The definition of the outcomes, all covariates, and the use of an additive genetic model was consistent with the original analyses in FHS. Results: The intronic SNP rs6495446 in the gene MTHFS was significantly associated with CKD among white ARIC participants at visit 4: the odds ratio per each C allele was 1.24 (95% CI 1.09–1.41, p = 0.001). Borderline significant associations of rs6495446 were observed with CKD at study visit 1 (p = 0.024), eGFR at study visits 1 (p = 0.073) and 4 (lower mean eGFR per C allele by 0.6 ml/min/1.73 m2\text{m}^2, p = 0.043) and kidney disease progression (hazard ratio 1.13 per each C allele, 95% CI 1.00–1.26, p = 0.041). Another SNP, rs3779748 in EYA1, was significantly associated with CKD at ARIC visit 1 (odds ratio per each T allele 1.22, p = 0.01), but only with eGFR and cystatin C in FHS. Conclusion: This genome-wide association study provides unbiased information implicating MTHFS as a candidate gene for kidney disease. Our findings highlight the importance of replication to identify common SNPs associated with renal traits

    Syndecan-1 Enhances Proliferation, Migration and Metastasis of HT-1080 Cells in Cooperation with Syndecan-2

    Get PDF
    Syndecans are transmembrane heparan sulphate proteoglycans. Their role in the development of the malignant phenotype is ambiguous and depends upon the particular type of cancer. Nevertheless, syndecans are promising targets in cancer therapy, and it is important to elucidate the mechanisms controlling their various cellular effects. According to earlier studies, both syndecan-1 and syndecan-2 promote malignancy of HT-1080 human fibrosarcoma cells, by increasing the proliferation rate and the metastatic potential and migratory ability, respectively. To better understand their tumour promoter role in this cell line, syndecan expression levels were modulated in HT-1080 cells and the growth rate, chemotaxis and invasion capacity were studied. For in vivo testing, syndecan-1 overexpressing cells were also inoculated into mice. Overexpression of full length or truncated syndecan-1 lacking the entire ectodomain but containing the four juxtamembrane amino acids promoted proliferation and chemotaxis. These effects were accompanied by a marked increase in syndecan-2 protein expression. The pro-migratory and pro-proliferative effects of truncated syndecan-1 were not observable when syndecan-2 was silenced. Antisense silencing of syndecan-2, but not that of syndecan-1, inhibited cell migration. In vivo, both full length and truncated syndecan-1 increased tumour growth and metastatic rate. Based on our in vitro results, we conclude that the tumour promoter role of syndecan-1 observed in HT-1080 cells is independent of its ectodomain; however, in vivo the presence of the ectodomain further increases tumour proliferation. The enhanced migratory ability induced by syndecan-1 overexpression is mediated by syndecan-2. Overexpression of syndecan-1 also leads to activation of IGF1R and increased expression of Ets-1. These changes were not evident when syndecan-2 was overexpressed. These findings suggest the involvement of IGF1R and Ets-1 in the induction of syndecan-2 synthesis and stimulation of proliferation by syndecan-1. This is the first report demonstrating that syndecan-1 enhances malignancy of a mesenchymal tumour cell line, via induction of syndecan-2 expression
    • …
    corecore