85 research outputs found

    Modelling Earthquake Ground Motions by Stochastic Method

    Get PDF
    The prediction of earthquake ground motions in accordance with recorded observations from past events is the core business of engineering seismology. An attenuation model presents values of parameters characterising the intensities and properties of ground motions estimated of projected earthquake scenarios (which are expressed in terms of magnitude and distance). Empirical attenuation models are developed from regression analysis of recorded strong motion accelerograms. In situations where strong motion data are scarce the database of records has to cover a very large area which may be an entire continent (eg. Ambrasey model for Europe) or a large part of a continent (eg. Toro model for Central & Eastern North America) in order that the size of the database has statistical significance (Toro et al., 1997; Ambrasey, 1995). Thus, attenuation modelling based on regression analysis of instrumental data is problematic when applied to regions of low and moderate seismicity. This is because of insufficient representative data that has been collected and made available for model development purposes. An alternative approach to attenuation modelling is use of theoretical models. Unlike an empirical model, a theoretical model only makes use of recorded data to help ascertain values of parameters in the model rather than to determine trends from scratch by regression of data. Thus, much less ground motion data is required for the modelling. Data that is available could be used to verify the accuracies of estimates made by the theoretical model. Ground motion simulations by classical wave theory provides comprehensive description of the earthquake ground motions but information that is available would typically not be sufficient as input to the simulations. The heuristic source model of Brune (1970) which defines the frequency content of seismic waves radiated from a point source is much simpler. The model has only three parameters : seismic moment, distance and the stress parameter. Combining this point source model with a number of filter functions which represent modification effects of the wave travel path and the site provides estimates for the Fourier amplitude spectrum of the motion generated by the earthquake on the ground surface. The source model (of Brune) in combination with the various filter functions are collectively known as the seismological model (Boore, 1983). Subsequent research by Atkinson and others provides support for the proposition that simulations from a well calibrated point source model are reasonably consistent with those from the more realistic finite fault models

    Aluminum hierarchical tubular structure inspired by skeletal muscle tissues::Quasi-static and low-velocity impact testing

    Get PDF
    This paper investigates experimentally and numerically the protective capability of skeletal muscle-inspired hierarchical tubular (MHT) structures made of aluminum under both quasi-static and dynamic impact conditions. In the quasi-static compression tests, structures with higher hierarchical order were more deformable and had lower contact force. Dynamic impact tests were conducted for the first time on MHT specimens of three different hierarchical orders using a drop tower facility. The results indicated a significant reduction in both the maximum and mean contact forces on the protected body when shielded by the second- and third-order MHT structures. This suggested that increasing the hierarchical order of the structure effectively enhanced impact protection capability. Numerical models were developed using ABAQUS/Explicit to accurately reproduce the deformation process and force-time functions of the dynamic impact scenarios. A parametric study found that the impact resistance performance of the MHT structures was robust against various impact velocities and masses

    Residential building stock modelling for mainland China targeted for seismic risk assessment

    Get PDF
    To enhance the estimation accuracy of economic loss and casualty in seismic risk assessment, a high-resolution building exposure model is necessary. Previous studies in developing global and regional building exposure models usually use coarse administrative-level (e.g. country or sub-country level) census data as model inputs, which cannot fully reflect the spatial heterogeneity of buildings in large countries like China. To develop a high-resolution residential building stock model for mainland China, this paper uses finer urbanity-level population and building-related statistics extracted from the records in the tabulation of the 2010 population census of the People\u27s Republic of China (hereafter abbreviated as the “2010 census”). In the 2010 census records, for each province, the building-related statistics are categorized into three urbanity levels (urban, township, and rural). To disaggregate these statistics into high-resolution grid level, we need to determine the urbanity attributes of grids within each province. For this purpose, the geo-coded population density profile (with 1 km × 1 km resolution) developed in the 2015 Global Human Settlement Layer (GSHL) project is selected. Then for each province, the grids are assigned with urban, township, or rural attributes according to the population density in the 2015 GHSL profile. Next, the urbanity-level building-related statistics can be disaggregated into grids, and the 2015 GHSL population in each grid is used as the disaggregation weight. Based on the four structure types (steel and reinforced concrete, mixed, brick and wood, other) and five storey classes (1, 2–3, 4–6, 7–9, ≥10) of residential buildings classified in the 2010 census records, we reclassify the residential buildings into 17 building subtypes attached with both structure type and storey class and estimate their unit construction prices. Finally, we develop a geo-coded 1 km × 1 km resolution residential building exposure model for 31 provinces of mainland China. In each 1 km × 1 km grid, the floor areas of the 17 residential building subtypes and their replacement values are estimated. The model performance is evaluated to be satisfactory, and its practicability in seismic risk assessment is also confirmed. Limitations of the proposed model and directions for future improvement are discussed. The whole modelling process presented in this paper is fully reproducible, and all the modelled results are publicly accessible

    Should we design buildings for lower-probability earthquake motion?

    Full text link

    GSI Scientific Report 2009 [GSI Report 2010-1]

    Get PDF
    Displacement design response spectrum is an essential component for the currently-developing displacement-based seismic design and assessment procedures. This paper proposes a new and simple method for constructing displacement design response spectra on soft soil sites. The method takes into account modifications of the seismic waves by the soil layers, giving due considerations to factors such as the level of bedrock shaking, material non-linearity, seismic impedance contrast at the interface between soil and bedrock, and plasticity of the soil layers. The model is particularly suited to applications in regions with a paucity of recorded strong ground motion data, from which empirical models cannot be reliably developed

    Transmission dynamics of the etiological agent of SARS in Hong Kong: impact of public health interventions.

    No full text
    We present an analysis of the first 10 weeks of the severe acute respiratory syndrome (SARS) epidemic in Hong Kong. The epidemic to date has been characterized by two large clusters-initiated by two separate "super-spread" events (SSEs)-and by ongoing community transmission. By fitting a stochastic model to data on 1512 cases, including these clusters, we show that the etiological agent of SARS is moderately transmissible. Excluding SSEs, we estimate that 2.7 secondary infections were generated per case on average at the start of the epidemic, with a substantial contribution from hospital transmission. Transmission rates fell during the epidemic, primarily as a result of reductions in population contact rates and improved hospital infection control, but also because of more rapid hospital attendance by symptomatic individuals. As a result, the epidemic is now in decline, although continued vigilance is necessary for this to be maintained. Restrictions on longer range population movement are shown to be a potentially useful additional control measure in some contexts. We estimate that most currently infected persons are now hospitalized, which highlights the importance of control of nosocomial transmission

    Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in Hong Kong.

    No full text
    BACKGROUND: Health authorities worldwide, especially in the Asia Pacific region, are seeking effective public-health interventions in the continuing epidemic of severe acute respiratory syndrome (SARS). We assessed the epidemiology of SARS in Hong Kong. METHODS: We included 1425 cases reported up to April 28, 2003. An integrated database was constructed from several sources containing information on epidemiological, demographic, and clinical variables. We estimated the key epidemiological distributions: infection to onset, onset to admission, admission to death, and admission to discharge. We measured associations between the estimated case fatality rate and patients' age and the time from onset to admission. FINDINGS: After the initial phase of exponential growth, the rate of confirmed cases fell to less than 20 per day by April 28. Public-health interventions included encouragement to report to hospital rapidly after the onset of clinical symptoms, contact tracing for confirmed and suspected cases, and quarantining, monitoring, and restricting the travel of contacts. The mean incubation period of the disease is estimated to be 6.4 days (95% CI 5.2-7.7). The mean time from onset of clinical symptoms to admission to hospital varied between 3 and 5 days, with longer times earlier in the epidemic. The estimated case fatality rate was 13.2% (9.8-16.8) for patients younger than 60 years and 43.3% (35.2-52.4) for patients aged 60 years or older assuming a parametric gamma distribution. A non-parametric method yielded estimates of 6.8% (4.0-9.6) and 55.0% (45.3-64.7), respectively. Case clusters have played an important part in the course of the epidemic. INTERPRETATION: Patients' age was strongly associated with outcome. The time between onset of symptoms and admission to hospital did not alter outcome, but shorter intervals will be important to the wider population by restricting the infectious period before patients are placed in quarantine
    corecore