138 research outputs found
Error Rate of the Kane Quantum Computer CNOT Gate in the Presence of Dephasing
We study the error rate of CNOT operations in the Kane solid state quantum
computer architecture. A spin Hamiltonian is used to describe the system.
Dephasing is included as exponential decay of the off diagonal elements of the
system's density matrix. Using available spin echo decay data, the CNOT error
rate is estimated at approsimately 10^{-3}.Comment: New version includes substantial additional data and merges two old
figures into one. (12 pages, 6 figures
Limits on the monopole magnetic field from measurements of the electric dipole moments of atoms, molecules and the neutron
A radial magnetic field can induce a time invariance violating electric
dipole moment (EDM) in quantum systems. The EDMs of the Tl, Cs, Xe and Hg atoms
and the neutron that are produced by such a field are estimated. The
contributions of such a field to the constants, of the T,P-odd
interactions and are also estimated for the TlF, HgF and YbF molecules (where
() is the electron (nuclear) spin and is the molecular
axis). The best limit on the contact monopole field can be obtained from the
measured value of the Tl EDM. The possibility of such a field being produced
from polarization of the vacuum of electrically charged magnetic monopoles
(dyons) by a Coulomb field is discussed, as well as the limit on these dyons.
An alternative mechanism involves chromomagnetic and chromoelectric fields in
QCD.Comment: Uses RevTex, 16 pages, 4 postscript figures. An explanation of why
there is no orbital contribution to the EDM has been added, and the
presentation has been improved in genera
Atomic diffraction from nanostructured optical potentials
We develop a versatile theoretical approach to the study of cold-atom
diffractive scattering from light-field gratings by combining calculations of
the optical near-field, generated by evanescent waves close to the surface of
periodic nanostructured arrays, together with advanced atom wavepacket
propagation on this optical potential.Comment: 8 figures, 10 pages, submitted to Phys. Rev.
CP violation
The salient features of CP-violating interactions in the standard electroweak
theory and in a few of its popular extensions are discussed. Moreover a brief
overview is given on the status and prospects of searches for CP
non-conservation effects in low and high energy experiments.Comment: 28 pages, Lectures given at the 37th Winter School on Particle
Physics, Schladming, Austria, 199
Minutes-duration optical flares with supernova luminosities
In recent years, certain luminous extragalactic optical transients have been observed to last only a few days1. Their short observed duration implies a different powering mechanism from the most common luminous extragalactic transients (supernovae), whose timescale is weeks2. Some short-duration transients, most notably AT2018cow (ref.â3), show blue optical colours and bright radio and X-ray emission4. Several AT2018cow-like transients have shown hints of a long-lived embedded energy source5, such as X-ray variability6,7, prolonged ultraviolet emission8, a tentative X-ray quasiperiodic oscillation9,10 and large energies coupled to fast (but subrelativistic) radio-emitting ejecta11,12. Here we report observations of minutes-duration optical flares in the aftermath of an AT2018cow-like transient, AT2022tsd (the âTasmanian Devilâ). The flares occur over a period of months, are highly energetic and are probably nonthermal, implying that they arise from a near-relativistic outflow or jet. Our observations confirm that, in some AT2018cow-like transients, the embedded energy source is a compact object, either a magnetar or an accreting black hole
Search for pair production of boosted Higgs bosons via vector-boson fusion in the bbÂŻbbÂŻ final state using pp collisions at âs = 13 TeV with the ATLAS detector
A search for Higgs boson pair production via vector-boson fusion is performed in the Lorentz-boosted regime,
where a Higgs boson candidate is reconstructed as a single large-radius jet, using 140 fbâ1 of protonâproton
collision data at âs = 13 TeV recorded by the ATLAS detector at the Large Hadron Collider. Only Higgs boson
decays into bottom quark pairs are considered. The search is particularly sensitive to the quartic coupling between
two vector bosons and two Higgs bosons relative to its Standard Model prediction, K2V . This study constrains K2V
to 0.55 < K2V < 1.49 at the 95% confidence level. The value K2V = 0 is excluded with a significance of 3.8 standard
deviations with other Higgs boson couplings fixed to their Standard Model values. A search for new heavy spin-0
resonances that would mediate Higgs boson pair production via vector-boson fusion is carried out in the mass
range of 1â5 TeV for the first time under several model and decay-width assumptions. No significant deviation
from the Standard Model hypothesis is observed and exclusion limits at the 95% confidence level are derived
- âŠ