2,621 research outputs found

    Bar graph monitor

    Get PDF
    Bar graph monitor of pulse position modulation telemetry ground station equipment for sounding rocket

    Adiabatic transfer of light in a double cavity and the optical Landau-Zener problem

    Full text link
    We analyze the evolution of an electromagnetic field inside a double cavity when the difference in length between the two cavities is changed, e.g. by translating the common mirror. We find that this allows photons to be moved deterministically from one cavity to the other. We are able to obtain the conditions for adiabatic transfer by first mapping the Maxwell wave equation for the electric field onto a Schroedinger-like wave equation, and then using the Landau-Zener result for the transition probability at an avoided crossing. Our analysis reveals that this mapping only rigorously holds when the two cavities are weakly coupled (i.e. in the regime of a highly reflective common mirror), and that, generally speaking, care is required when attempting a hamiltonian description of cavity electrodynamics with time-dependent boundary conditions.Comment: 24 pages, 18 figures. Version 2 includes a new section (Sec. VIII) on the regimes of validity of the Schroedinger-like equations and also of the adiabatic approximation, together with a new figure (Fig. 10). The discussion section (Sec. XI) has also been enhance

    Influence of primary particle density in the morphology of agglomerates

    Get PDF
    Agglomeration processes occur in many different realms of science such as colloid and aerosol formation or formation of bacterial colonies. We study the influence of primary particle density in agglomerate structure using diffusion-controlled Monte Carlo simulations with realistic space scales through different regimes (DLA and DLCA). The equivalence of Monte Carlo time steps to real time scales is given by Hirsch's hydrodynamical theory of Brownian motion. Agglomerate behavior at different time stages of the simulations suggests that three indices (fractal exponent, coordination number and eccentricity index) characterize agglomerate geometry. Using these indices, we have found that the initial density of primary particles greatly influences the final structure of the agglomerate as observed in recent experimental works.Comment: 11 pages, 13 figures, PRE, to appea

    Multi Mode Interferometer for Guided Matter Waves

    Get PDF
    We describe the fundamental features of an interferometer for guided matter waves based on Y-beam splitters and show that, in a quasi two-dimensional regime, such a device exhibits high contrast fringes even in a multi mode regime and fed from a thermal source.Comment: Final version (accepted to PRL

    Surface-induced heating of cold polar molecules

    Full text link
    We study the rotational and vibrational heating of diatomic molecules placed near a surface at finite temperature on the basis of macroscopic quantum electrodynamics. The internal molecular evolution is governed by transition rates that depend on both temperature and position. Analytical and numerical methods are used to investigate the heating of several relevant molecules near various surfaces. We determine the critical distances at which the surface itself becomes the dominant source of heating and we investigate the transition between the long-range and short-range behaviour of the heating rates. A simple formula is presented that can be used to estimate the surface-induced heating rates of other molecules of interest. We also consider how the heating depends on the thickness and composition of the surface.Comment: 17 pages, 7 figure

    Nonadiabatic decoherence control of qubits strongly coupled to continuum edge

    Full text link
    We propose a method for controlling the decoherence of a driven qubit that is strongly coupled to a reservoir, when the qubit resonance frequency is close to a continuum edge of the reservoir spectum. This strong-coupling regime is outside the scope of existing methods of decoherence control. We demonstate that an appropriate sequence of nearly abrupt changes of the resonance frequency can protect the qubit state from decay and decoherence more effectively than the intuitively obvious alternative, which is to fix the resonance well within a forbidden bandgap of the reservoir spectrum, as far as possible from the continuum edge. The "counterintuitive" nonadiabatic method outlined here can outperform its adiabatic counterparts in maintaining a high fidelity of quantum logic operations. The remarkable effectiveness of the proposed method, which requires much lower rates of frequency changes than previously proposed control methods, is due to the ability of appropriately alternating detunings from the continuum edge to augment the interference of the emitted and back-scattered quanta, thereby helping to stabilize the qubit state against decay. Applications to the control of decoherence near the edge of radiative, vibrational an photoionization continua are discussed.Comment: 7 pages, 4 figure

    Atomic wave packet dynamics in finite time-dependent optical lattices

    Full text link
    Atomic wave packets in optical lattices which are both spatially finite and time-dependent exhibit many striking similarities with light pulses in photonic crystals. We analytically characterize the transmission properties of such a potential geometry for an ideal gas in terms of a position-dependent band structure. In particular, we find that at specific energies, wave packets at the center of the finite lattice may be enclosed by pairs of band gaps. These act as mirrors between which the atomic wave packet is reflected, thereby effectively yielding a matter wave cavity. We show that long trapping times may be obtained in such a resonator and investigate the collapse and revival dynamics of the atomic wave packet by numerical evaluation of the Schr\"odinger equation

    Chiral discrimination in optical trapping and manipulation

    Get PDF
    When circularly polarized light interacts with chiral molecules or nanoscale particles powerful symmetry principles determine the possibility of achieving chiral discrimination, and the detailed form of electrodynamic mechanisms dictate the types of interaction that can be involved. The optical trapping of molecules and nanoscale particles can be described in terms of a forward-Rayleigh scattering mechanism, with trapping forces being dependent on the positioning within the commonly non-uniform intensity beam profile. In such a scheme, nanoparticles are commonly attracted to local potential energy minima, ordinarily towards the centre of the beam. For achiral particles the pertinent material response property usually entails an electronic polarizability involving transition electric dipole moments. However, in the case of chiral molecules, additional effects arise through the engagement of magnetic counterpart transition dipoles. It emerges that, when circularly polarized light is used for the trapping, a discriminatory response can be identified between left- and right-handed polarizations. Developing a quantum framework to accurately describe this phenomenon, with a tensor formulation to correctly represent the relevant molecular properties, the theory leads to exact analytical expressions for the associated energy landscape contributions. Specific results are identified for liquids and solutions, both for isotropic media and also where partial alignment arises due to a static electric field. The paper concludes with a pragmatic analysis of the scope for achieving enantiomer separation by such methods

    Wave function recombination instability in cold atom interferometers

    Full text link
    Cold atom interferometers use guiding potentials that split the wave function of the Bose-Einstein condensate and then recombine it. We present theoretical analysis of the wave function recombination instability that is due to the weak nonlinearity of the condensate. It is most pronounced when the accumulated phase difference between the arms of the interferometer is close to an odd multiple of PI and consists in exponential amplification of the weak ground state mode by the strong first excited mode. The instability exists for both trapped-atom and beam interferometers.Comment: 4 pages, 5 figure
    • …
    corecore