123 research outputs found

    Spontaneous decay in the presence of dispersing and absorbing bodies: general theory and application to a spherical cavity

    Full text link
    A formalism for studying spontaneous decay of an excited two-level atom in the presence of dispersing and absorbing dielectric bodies is developed. An integral equation, which is suitable for numerical solution, is derived for the atomic upper-state-probability amplitude. The emission pattern and the power spectrum of the emitted light are expressed in terms of the Green tensor of the dielectric-matter formation including absorption and dispersion. The theory is applied to the spontaneous decay of an excited atom at the center of a three-layered spherical cavity, with the cavity wall being modeled by a band-gap dielectric of Lorentz type. Both weak coupling and strong coupling are studied, the latter with special emphasis on the cases where the atomic transition is (i) in the normal-dispersion zone near the medium resonance and (ii) in the anomalous-dispersion zone associated with the band gap. In a single-resonance approximation, conditions of the appearance of Rabi oscillations and closed solutions to the evolution of the atomic state population are derived, which are in good agreement with the exact numerical results.Comment: 12 pages, 6 figures, typos fixed, 1 figure adde

    Aggregate breakdown and dispersion of soil samples amended with sugarcane vinasse

    Get PDF
    Soil aggregation is a very complex issue related to important soil attributes and processes. The aggregate breakdown and dispersion of soil samples amended with sugarcane vinasse were evaluated using ultrasonic energy. Vinasse is an important byproduct of sugarcane industries, intensively applied to soils in Brazil as liquid fertilizer. Samples of two Oxisols and one Ultisol were used in this study. The physical and chemical characterization of soils was performed, and the 1 to 2 mm size aggregates (200 g) were packed in PVC columns (6.0 cm high and 4.0 cm internal diameter) and incubated with sugarcane vinasse under lab conditions for 1, 30 and 60 days. After incubation, aggregates were submitted to levels of ultrasonic energy, and the particle size distribution (53 to 2,000 µm, 2 to 53 µm, and < 2 µm fractions) was quantified. Mathematical equations were used to relate the mass of aggregates in each of these fractions to the applied ultrasonic energy, and parameters related to aggregate stability were then obtained. Soils showed an aggregate-hierarchy resulting in a stepwise breakdown under ultrasonic agitation. Considering this soil-aggregation hierarchy, vinasse contributed even in a short time to the bonding between and within 2 to 53 µm aggregates, mainly in the Oxisols. This may be related to organic compounds present in the vinasse, cementing soil particles. Potassium enrichment of soil samples did not contribute to soil dispersion

    Minutes-duration optical flares with supernova luminosities

    Get PDF
    In recent years, certain luminous extragalactic optical transients have been observed to last only a few days1. Their short observed duration implies a different powering mechanism from the most common luminous extragalactic transients (supernovae), whose timescale is weeks2. Some short-duration transients, most notably AT2018cow (ref. 3), show blue optical colours and bright radio and X-ray emission4. Several AT2018cow-like transients have shown hints of a long-lived embedded energy source5, such as X-ray variability6,7, prolonged ultraviolet emission8, a tentative X-ray quasiperiodic oscillation9,10 and large energies coupled to fast (but subrelativistic) radio-emitting ejecta11,12. Here we report observations of minutes-duration optical flares in the aftermath of an AT2018cow-like transient, AT2022tsd (the ‘Tasmanian Devil’). The flares occur over a period of months, are highly energetic and are probably nonthermal, implying that they arise from a near-relativistic outflow or jet. Our observations confirm that, in some AT2018cow-like transients, the embedded energy source is a compact object, either a magnetar or an accreting black hole

    Software performance of the ATLAS track reconstruction for LHC run 3

    Get PDF
    Charged particle reconstruction in the presence of many simultaneous proton–proton (pp) collisions in the LHC is a challenging task for the ATLAS experiment’s reconstruction software due to the combinatorial complexity. This paper describes the major changes made to adapt the software to reconstruct high-activity collisions with an average of 50 or more simultaneous pp interactions per bunch crossing (pileup) promptly using the available computing resources. The performance of the key components of the track reconstruction chain and its dependence on pile-up are evaluated, and the improvement achieved compared to the previous software version is quantified. For events with an average of 60 pp collisions per bunch crossing, the updated track reconstruction is twice as fast as the previous version, without significant reduction in reconstruction efficiency and while reducing the rate of combinatorial fake tracks by more than a factor two

    Search for heavy Majorana or Dirac neutrinos and right-handed W gauge bosons in final states with charged leptons and jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search for heavy right-handed Majorana or Dirac neutrinos NR and heavy right-handed gauge bosons WR is performed in events with energetic electrons or muons, with the same or opposite electric charge, and energetic jets. The search is carried out separately for topologies of clearly separated final-state products (“resolved” channel) and topologies with boosted final states with hadronic and/or leptonic products partially overlapping and reconstructed as a large-radius jet (“boosted” channel). The events are selected from pp collision data at the LHC with an integrated luminosity of 139 fb−1 collected by the ATLAS detector at √s = 13 TeV. No significant deviations from the Standard Model predictions are observed. The results are interpreted within the theoretical framework of a left-right symmetric model, and lower limits are set on masses in the heavy righthanded WR boson and NR plane. The excluded region extends to about m(WR) = 6.4 TeV for both Majorana and Dirac NR neutrinos at m(NR) < 1 TeV. NR with masses of less than 3.5 (3.6) TeV are excluded in the electron (muon) channel at m(WR) = 4.8 TeV for the Majorana neutrinos, and limits of m(NR) up to 3.6 TeV for m(WR) = 5.2 (5.0) TeV in the electron (muon) channel are set for the Dirac neutrinos. These constitute the most stringent exclusion limits to date for the model considered

    Observation of four-top-quark production in the multilepton final state with the ATLAS detector

    Get PDF
    This paper presents the observation of four-top-quark (tt¯tt¯) production in proton-proton collisions at the LHC. The analysis is performed using an integrated luminosity of 140 fb−1 at a centre-of-mass energy of 13 TeV collected using the ATLAS detector. Events containing two leptons with the same electric charge or at least three leptons (electrons or muons) are selected. Event kinematics are used to separate signal from background through a multivariate discriminant, and dedicated control regions are used to constrain the dominant backgrounds. The observed (expected) significance of the measured tt¯tt¯ signal with respect to the standard model (SM) background-only hypothesis is 6.1 (4.3) standard deviations. The tt¯tt¯ production cross section is measured to be 22.5+6.6−5.5 fb, consistent with the SM prediction of 12.0±2.4 fb within 1.8 standard deviations. Data are also used to set limits on the three-top-quark production cross section, being an irreducible background not measured previously, and to constrain the top-Higgs Yukawa coupling and effective field theory operator coefficients that affect tt¯tt¯ production

    Search for the Zγ decay mode of new high-mass resonances in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This letter presents a search for narrow, high-mass resonances in the Zγ final state with the Z boson decaying into a pair of electrons or muons. The √s = 13 TeV pp collision data were recorded by the ATLAS detector at the CERN Large Hadron Collider and have an integrated luminosity of 140 fb−1. The data are found to be in agreement with the Standard Model background expectation. Upper limits are set on the resonance production cross section times the decay branching ratio into Zγ. For spin-0 resonances produced via gluon–gluon fusion, the observed limits at 95% confidence level vary between 65.5 fb and 0.6 fb, while for spin-2 resonances produced via gluon–gluon fusion (or quark–antiquark initial states) limits vary between 77.4 (76.1) fb and 0.6 (0.5) fb, for the mass range from 220 GeV to 3400 GeV
    corecore