5 research outputs found

    Relevance of Minor Neuropsychological Deficits in Patients With Subjective Cognitive Decline

    Get PDF
    peer reviewed[en] BACKGROUND AND OBJECTIVES: To determine the relevance of minor neuropsychological deficits (MNPD) in patients with subjective cognitive decline (SCD) with regard to CSF levels of Alzheimer disease (AD) biomarkers, cognitive decline, and clinical progression to mild cognitive impairment (MCI). METHODS: This study included patients with clinical SCD and SCD-free, healthy control (HC) participants with available baseline CSF and/or longitudinal cognitive data from the observational DZNE Longitudinal Cognitive Impairment and Dementia study. We defined MNPD as a performance of at least 0.5SD below the mean on a demographically adjusted total score derived from the Consortium to Establish a Registry for Alzheimer's Disease neuropsychological assessment battery. We compared SCD patients with MNPD and those without MNPD with regard to CSF amyloid-β (Aβ)42/Aβ40, phosphorylated tau (p-tau181), total tau and Aβ42/p-tau181 levels, longitudinal cognitive composite trajectories, and risk of clinical progression to incident MCI (follow-up M ± SD: 40.6 ± 23.7 months). In addition, we explored group differences between SCD and HC in those without MNPD. RESULTS: In our sample (N = 672, mean age: 70.7 ± 5.9 years, 50% female), SCD patients with MNPD (n = 55, 12.5% of SCD group) showed significantly more abnormal CSF biomarker levels, increased cognitive decline, and a higher risk of progression to incident MCI (HR: 4.07, 95% CI 2.46-6.74) compared with SCD patients without MNPD (n = 384). MNPD had a positive predictive value of 57.0% (95% CI 38.5-75.4) and a negative predictive value of 86.0% (95% CI 81.9-90.1) for the progression of SCD to MCI within 3 years. SCD patients without MNPD showed increased cognitive decline and a higher risk of incident MCI compared with HC participants without MNPD (n = 215; HR: 4.09, 95% CI 2.07-8.09), while AD biomarker levels did not differ significantly between these groups. DISCUSSION: Our results suggest that MNPD are a risk factor for AD-related clinical progression in cognitively normal patients seeking medical counseling because of SCD. As such, the assessment of MNPD could be useful for individual clinical prediction and for AD risk stratification in clinical trials. However, SCD remains a risk factor for future cognitive decline even in the absence of MNPD

    Relevance of Minor Neuropsychological Deficits in Patients With Subjective Cognitive Decline

    Get PDF
    Background and ObjectivesTo determine the relevance of minor neuropsychological deficits (MNPD) in patients with subjective cognitive decline (SCD) with regard to CSF levels of Alzheimer disease (AD) biomarkers, cognitive decline, and clinical progression to mild cognitive impairment (MCI).MethodsThis study included patients with clinical SCD and SCD-free, healthy control (HC) participants with available baseline CSF and/or longitudinal cognitive data from the observational DZNE Longitudinal Cognitive Impairment and Dementia study. We defined MNPD as a performance of at least 0.5SD below the mean on a demographically adjusted total score derived from the Consortium to Establish a Registry for Alzheimer's Disease neuropsychological assessment battery. We compared SCD patients with MNPD and those without MNPD with regard to CSF amyloid-beta (A beta)42/A beta 40, phosphorylated tau (p-tau181), total tau and A beta 42/p-tau181 levels, longitudinal cognitive composite trajectories, and risk of clinical progression to incident MCI (follow-up M +/- SD: 40.6 +/- 23.7 months). In addition, we explored group differences between SCD and HC in those without MNPD.ResultsIn our sample (N = 672, mean age: 70.7 +/- 5.9 years, 50% female), SCD patients with MNPD (n = 55, 12.5% of SCD group) showed significantly more abnormal CSF biomarker levels, increased cognitive decline, and a higher risk of progression to incident MCI (HR: 4.07, 95% CI 2.46-6.74) compared with SCD patients without MNPD (n = 384). MNPD had a positive predictive value of 57.0% (95% CI 38.5-75.4) and a negative predictive value of 86.0% (95% CI 81.9-90.1) for the progression of SCD to MCI within 3 years. SCD patients without MNPD showed increased cognitive decline and a higher risk of incident MCI compared with HC participants without MNPD (n = 215;HR: 4.09, 95% CI 2.07-8.09), while AD biomarker levels did not differ significantly between these groups.DiscussionOur results suggest that MNPD are a risk factor for AD-related clinical progression in cognitively normal patients seeking medical counseling because of SCD. As such, the assessment of MNPD could be useful for individual clinical prediction and for AD risk stratification in clinical trials. However, SCD remains a risk factor for future cognitive decline even in the absence of MNPD

    August 2008GRAVITATIONAL WAVES FROM BINARY NEUTRON STARS AND TEST PARTICLE INSPIRALS INTO BLACK HOLES

    No full text
    As ground-based gravitational wave detectors are searching for gravitational waves at their design sensitivity and plans for future space-based detectors are underway, it is important to have accurate theoretical models of the expected gravitational waves to be able to detect potential signals and extract information from the measured data. This thesis contains work on developing theoretical tools for modeling the expected gravitational waves from two different classes of sources, which are key targets for current and future gravitational wave detectors. The work is based on four papers in collaboration with Éanna Flanagan. (i) We show that groundbased gravitational wave detectors may be able to constrain the nuclear equation of state using the early, relatively clean portion of the signal of detected neutron star neutron star inspirals. (ii) The second class of gravitational wave source we consider are radiation- reaction driven inspirals of test particles into much more massive black holes. Chapter 5 contains our work on developing a rigorous formalism based on two-timescal

    Tissue-engineered heart valves

    No full text
    The native heart valves are adaptive living tissues that are capable of growth and remodeling in response to changes in the hemodynamic environment. It is the intrinsic lack of this growth and remodeling capacity that causes current heart valve replacements to fail over time. Therefore, heart valve tissue engineering (HVTE) is being pursued with the aim of creating living, autologous replacement valves with the capacity for somatic growth and increased valve longevity. This chapter elaborates on the various HVTE paradigms, ranging from the in vitro creation of living valves to the use of acellular valvular grafts that are designed to induce endogenous regeneration in situ. This includes a delineation of the various cell types, scaffolds, and bioreactor systems that form the building blocks of HVTE, as well as a concise description of the added value of computational models. Finally, the merging of HVTE with percutaneous delivery techniques and the main current challenges toward robust clinical translation are discussed

    Assessing Global Water Storage Variability from GRACE: Trends, Seasonal Cycle, Subseasonal Anomalies and Extremes

    No full text
    corecore