31 research outputs found

    Differential regulation by iron of regA and toxA transcript accumulation in Pseudomonas aeruginosa.

    No full text
    Iron regulation of toxA and regA transcript accumulation was examined in Pseudomonas aeruginosa PA103 containing the regA gene on a multicopy plasmid. The patterns of transcript accumulation for toxA and regA were found to be positively correlated. Dot blot and Northern (RNA) blot analysis of total RNA isolated throughout the bacterial growth cycle indicated that multiple copies of the regA gene uncoupled iron repression of the first phase of transcript accumulation for both regA and toxA genes. However, regulation by iron of the second phase of transcript accumulation for each gene was unaffected by several regA gene copies. Total toxin production was increased in cells with multiple copies of regA grown in either low- or high-iron medium. Primer extension analysis of regA mRNA extracted from cells grown in high- and low-iron medium and examined at different points in the cell growth cycle supported the hypothesis that iron regulation of regA transcription occurs at the level of transcriptional initiation. Two start sites were shown for regA transcription at -164 and -75 base pairs from the ATG start codon. The differential regulation of regA transcript accumulation when regA is present in single or multiple copy and the mapping of independent start sites for regA mRNA support the evidence that regA transcription is directed by independently regulated promoter regions

    Sequence Analysis of the mip Gene of the Soilborne Pathogen Legionella longbeachae

    No full text
    To understand the basis of pathogenesis by Legionella longbeachae serogroup 1, the importance of the Mip protein in this species was examined. Amino-terminal analysis of the purified, cloned L. longbeachae serogroup 1 ATCC 33462 Mip protein confirmed that the cloned gene protein was expressed and processed in an Escherichia coli background. DNA sequence analysis of plasmid pIMVS27, containing the entire L. longbeachae serogroup 1 mip gene, revealed a high degree of homology to the mip gene of Legionella pneumophila serogroup 1, 76% homology at the DNA level and 87% identity at the amino acid level. Primer extension analysis determined that the start site of transcription was the same for both species, with some differences observed for the −10 and −35 promoter regions. Primers designed from the mip gene sequence obtained for L. longbeachae serogroup 1 ATCC 33462 were used to amplify the mip genes from L. longbeachae serogroup 2 ATCC 33484 and an Australian clinical isolate of L. longbeachae serogroup 1 A5H5. The mip gene from A5H5 was 100% identical to the type strain sequence. The serogroup 2 strain of L. longbeachae differed by 2 base pairs in third-codon positions. Allelic exchange mutagenesis was used to generate an isogenic mip mutant in ATCC 33462 and strain A5H5. The ATCC mip mutant was unable to infect a strain of Acanthamoebae sp. both in liquid and in a potting mix coculture system, while the A5H5 mip mutant behaved in a manner siilar to that of L. pneumophila serogroup 1, i.e., it displayed a reduced capacity to infect and multiply within Acanthamoebae. To determine if this mutation resulted in reduced virulence in the guinea pig animal model, the A5H5 mip mutant and its parent strain were assessed for their abilities to establish an infection after aerosol exposure. Unlike the virulent parent strain, the mutant strain did not kill any animals under two different dose regimes. The data indicate that the Mip protein plays an important role in the intracellular life cycle of L. longbeachae serogroup 1 species and is required for full virulence
    corecore