22 research outputs found
Luminescent detection of DNA-binding proteins
Transcription factors play a central role in cell development, differentiation and growth in biological systems due to their ability to regulate gene expression by binding to specific DNA sequences within the nucleus. The dysregulation of transcription factor signaling has been implicated in the pathogenesis of a number of cancers, developmental disorders, inflammation and autoimmunity. There is thus a high demand for convenient high-throughput methodologies able to detect sequence-specific DNA-binding proteins and monitor their DNA-binding activities. Traditional approaches for protein detection include gel mobility shift assays, DNA footprinting and enzyme-linked immunosorbent assays (ELISAs) which tend to be tedious, time-consuming, and may necessitate the use of radiographic labeling. By contrast, luminescence technologies offer the potential for rapid, sensitive and low-cost detection that are amenable to high-throughput and real-time analysis. The discoveries of molecular beacons and aptamers have spearheaded the development of new luminescent methodologies for the detection of proteins over the last decade. We survey here recent advances in the development of luminescent detection methods for DNA-binding proteins, including those based on molecular beacons, aptamer beacons, label-free techniques and exonuclease protection
Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A
The major histocompatibility complex (MHC) on chromosome 6 is associated with susceptibility to more common diseases than any other region of the human genome, including almost all disorders classified as autoimmune. In type 1 diabetes the major genetic susceptibility determinants have been mapped to the MHC class II genes HLA-DQB1 and HLA-DRB1 (refs 1-3), but these genes cannot completely explain the association between type 1 diabetes and the MHC region. Owing to the region's extreme gene density, the multiplicity of disease-associated alleles, strong associations between alleles, limited genotyping capability, and inadequate statistical approaches and sample sizes, which, and how many, loci within the MHC determine susceptibility remains unclear. Here, in several large type 1 diabetes data sets, we analyse a combined total of 1,729 polymorphisms, and apply statistical methods - recursive partitioning and regression - to pinpoint disease susceptibility to the MHC class I genes HLA-B and HLA-A (risk ratios >1.5; Pcombined = 2.01 × 10-19 and 2.35 × 10-13, respectively) in addition to the established associations of the MHC class II genes. Other loci with smaller and/or rarer effects might also be involved, but to find these, future searches must take into account both the HLA class II and class I genes and use even larger samples. Taken together with previous studies, we conclude that MHC-class-I-mediated events, principally involving HLA-B*39, contribute to the aetiology of type 1 diabetes. ©2007 Nature Publishing Group
Comparisons of Y-set disconnect system (Ultraset) versus conventional spike system in uremic patients on CAPD: Outcome and cost analysis
We conducted a single-blind, prospective randomized study on the use of the Y-set disconnect system (Ultraset) (U) versus the conventional (C) spike system to assess the peritonitis rate, exit-site infection (ESI), clinical outcome, the resulting hospitalization rate, and recurrent costs. Forty new end-stage renal failure patients admitted to the dialysis program were recruited into the study and 20 each were randomly allocated to the U and C systems. They were studied for a period of 12 months. The mean number of days required to train patients for the U and C systems were 8.6 and 9.8 days, respectively. The peritonitis rates for the U and C systems were one episode every 17 and 11.4 patient-months, respectively. The ESI rates for the U and C systems were one episode every 26.4 and 21.6 patient-months, respectively. Four catheters were removed due to fungal peritonitis (three with the C system and one with the U system). As related to peritonitis, patients on the C system required 57 hospital-days while those on the U system required 28 days per year. On cost analysis, the extra cost required for the U system can be offset by the other expenses incurred for events related to more infections on the C system. It is concluded that for the similar cumulative costs required for the patients on the two systems, the Y-set disconnect has a better morbidity profile than the conventional spike system.Link_to_subscribed_fulltex
CC16 levels correlate with cigarette smoke exposure in bronchial epithelial cells and with lung function decline in smokers
Abstract Background Club cell protein-16 (CC16) expression has been associated with smoking-related lung function decline. The study hypothesis was that CC16 expression in both serum and bronchial epithelium is associated with lung function decline in smokers, and exposure to cigarette smoke will lead to reduction in CC16 expression in bronchial epithelial cells. Methods In a cohort of community-based male Chinese subjects recruited for lung function test in 2000, we reassessed their lung function ten years later and measured serum levels of CC16. CC16 expression was further assayed in bronchial epithelium from endobronchial biopsies taken from an independent cohort of subjects undergoing autofluorescence bronchoscopy, and tested for correlation between CC16 immunostaining intensity and lung function. In an in-vitro model, bronchial epithelial cells were exposed to cigarette smoke extract (CSE), and the expression levels of CC16 were measured in bronchial epithelial cells before and after exposure to CSE. Results There was a significant association between FEV1 decline and serum CC16 levels in smokers. Expression of CC16 in bronchial epithelium showed significant correlation with FEV1/FVC. Bronchial epithelial cells showed significant decrease in CC16 expression after exposure to CSE, followed by a subsequent rise in CC16 expression upon removal of CSE. Conclusions Results of these clinical and laboratory investigations suggested that low serum CC16 was associated with smoking-related decline in lung function, demonstrated the first time in a Chinese cohort. The data also lend support to the putative role of CC16 in protection against smoking-related bronchial epithelial damage. (Abstract word count: 243) US clinical trial registry NCT01185652, first posted 20 August, 2010
Development of a Novel, Genome Subtraction-Derived, SARS-CoV-2-Specific COVID-19-nsp2 Real-Time RT-PCR Assay and Its Evaluation Using Clinical Specimens
The pandemic novel coronavirus infection, Coronavirus Disease 2019 (COVID-19), has affected at least 190 countries or territories, with 465,915 confirmed cases and 21,031 deaths. In a containment-based strategy, rapid, sensitive and specific testing is important in epidemiological control and clinical management. Using 96 SARS-CoV-2 and 104 non-SARS-CoV-2 coronavirus genomes and our in-house program, GolayMetaMiner, four specific regions longer than 50 nucleotides in the SARS-CoV-2 genome were identified. Primers were designed to target the longest and previously untargeted nsp2 region and optimized as a probe-free real-time reverse transcription-polymerase chain reaction (RT-PCR) assay. The new COVID-19-nsp2 assay had a limit of detection (LOD) of 1.8 TCID50/mL and did not amplify other human-pathogenic coronaviruses and respiratory viruses. Assay reproducibility in terms of cycle threshold (Cp) values was satisfactory, with the total imprecision (% CV) values well below 5%. Evaluation of the new assay using 59 clinical specimens from 14 confirmed cases showed 100% concordance with our previously developed COVID-19-RdRp/Hel reference assay. A rapid, sensitive, SARS-CoV-2-specific real-time RT-PCR assay, COVID-19-nsp2, was developed
Probable Airborne Transmission of Burkholderia pseudomallei Causing an Urban Outbreak of Melioidosis during Typhoon Season in Hong Kong, China. <subtitle>Urban Outbreak of Melioidosis in Hong Kong</subtitle>
ABSTRACTBetween January 2015 and October 2022, 38 patients with culture-confirmed melioidosis were identified in the Kowloon West (KW) Region, Hong Kong. Notably, thirty of them were clustered in the Sham Shui Po (SSP) district, which covers an estimated area of 2.5 km2. Between August and October 2022, 18 patients were identified in this district after heavy rainfall and typhoons. The sudden upsurge in cases prompted an environmental investigation, which involved collecting 20 air samples and 72 soil samples from residential areas near the patients. A viable isolate of Burkholderia pseudomallei was obtained from an air sample collected at a building site five days after a typhoon. B. pseudomallei DNA was also detected in 21 soil samples collected from the building site and adjacent gardening areas using full-length 16S rRNA gene sequencing, suggesting that B. psuedomallei is widely distributed in the soil environment surrounding the district. Core genome-multilocus sequence typing showed that the air sample isolate was phylogenetically clustered with the outbreak isolates in KW Region. Multispectral satellite imagery revealed a continuous reduction in vegetation region in SSP district by 162,255 m2 from 2016 to 2022, supporting the hypothesis of inhalation of aerosols from the contaminated soil as the transmission route of melioidosis during extreme weather events. This is because the bacteria in unvegetated soil are more easily spread by winds. In consistent with inhalational melioidosis, 24 (63.2%) patients had pneumonia. Clinicians should be aware of melioidosis during typhoon season and initiate appropriate investigation and treatment for patients with compatible symptoms
Recommended from our members
Genome-wide association study of age-related macular degeneration identifies associated variants in the TNXB–FKBPL–NOTCH4 region of chromosome 6p21.3
Age-related macular degeneration (AMD) is a leading cause of visual loss in Western populations. Susceptibility is influenced by age, environmental and genetic factors. Known genetic risk loci do not account for all the heritability. We therefore carried out a genome-wide association study of AMD in the UK population with 893 cases of advanced AMD and 2199 controls. This showed an association with the well-established AMD risk loci ARMS2 (age-related maculopathy susceptibility 2)-HTRA1 (HtrA serine peptidase 1) (P =2.7 Ă— 10(-72)), CFH (complement factor H) (P =2.3 Ă— 10(-47)), C2 (complement component 2)-CFB (complement factor B) (P =5.2 Ă— 10(-9)), C3 (complement component 3) (P =2.2 Ă— 10(-3)) and CFI (P =3.6 Ă— 10(-3)) and with more recently reported risk loci at VEGFA (P =1.2 Ă— 10(-3)) and LIPC (hepatic lipase) (P =0.04). Using a replication sample of 1411 advanced AMD cases and 1431 examined controls, we confirmed a novel association between AMD and single-nucleotide polymorphisms on chromosome 6p21.3 at TNXB (tenascin XB)-FKBPL (FK506 binding protein like) [rs12153855/rs9391734; discovery P =4.3 Ă— 10(-7), replication P =3.0 Ă— 10(-4), combined P =1.3 Ă— 10(-9), odds ratio (OR) = 1.4, 95% confidence interval (CI) = 1.3-1.6] and the neighbouring gene NOTCH4 (Notch 4) (rs2071277; discovery P =3.2 Ă— 10(-8), replication P =3.8 Ă— 10(-5), combined P =2.0 Ă— 10(-11), OR = 1.3, 95% CI = 1.2-1.4). These associations remained significant in conditional analyses which included the adjacent C2-CFB locus. TNXB, FKBPL and NOTCH4 are all plausible AMD susceptibility genes, but further research will be needed to identify the causal variants and determine whether any of these genes are involved in the pathogenesis of AMD