609 research outputs found

    Extreme self-organization in networks constructed from gene expression data

    Full text link
    We study networks constructed from gene expression data obtained from many types of cancers. The networks are constructed by connecting vertices that belong to each others' list of K-nearest-neighbors, with K being an a priori selected non-negative integer. We introduce an order parameter for characterizing the homogeneity of the networks. On minimizing the order parameter with respect to K, degree distribution of the networks shows power-law behavior in the tails with an exponent of unity. Analysis of the eigenvalue spectrum of the networks confirms the presence of the power-law and small-world behavior. We discuss the significance of these findings in the context of evolutionary biological processes.Comment: 4 pages including 3 eps figures, revtex. Revisions as in published versio

    Hot electron effects and non-linear transport in hole doped manganites

    Get PDF
    We show that strong non--linear electron transport in the ferromagnetic insulating (FMI) state of manganites, responsible for phenomena such as colossal electroresistance and current induced resistance switching, can occur due to a hot electron effect. In the FMI state, which we show is an insulator with a Coulomb gap, the temperature of the electron and lattice baths can decouple at high input power levels, leading to heating of the electron bath. Parameters of the hot electron effect model were independently determined via time dependence experiments and are in good agreement with the experimental values.Comment: Preprint generated using RevTeX4. 3 Figure

    Effect of Thermal Annealing on Boron Diffusion, Micro-structural, Electrical and Magnetic properties of Laser Ablated CoFeB Thin Films

    Full text link
    We report on Boron diffusion and subsequent crystallization of Co40_{40}Fe40_{40}B20_{20} (CoFeB) thin films on SiO2_2/Si(001) substrate using pulsed laser deposition. Secondary ion mass spectroscopy reveals Boron diffusion at the interface in both amorphous and crystalline phase of CoFeB. High-resolution transmission electron microscopy reveals a small fraction of nano-crystallites embedded in the amorphous matrix of CoFeB. However, annealing at 400^\circC results in crystallization of CoFe with \textit{bcc} structure along (110) orientation. As-deposited films are non-metallic in nature with the coercivity (Hc_c) of 5Oe while the films annealed at 400^\circC are metallic with a Hc_c of 135Oe.Comment: 16 pages, 6 figure

    Colossal electroresistance in ferromagnetic insulating state of single crystal Nd0.7_0.7Pb0.3_0.3MnO3_3

    Full text link
    Colossal electroresistance (CER) has been observed in the ferromagnetic insulating (FMI) state of a manganite. Notably, the CER in the FMI state occurs in the absence of magnetoresistance (MR). Measurements of electroresistance (ER) and current induced resistivity switching have been performed in the ferromagnetic insulating state of a single crystal manganite of composition Nd0.7_0.7Pb0.3_0.3MnO3_3 (NPMO30). The sample has a paramagnetic to ferromagnetic (Curie) transition temperature, Tc = 150 K and the ferromagnetic insulating state is realized for temperatures, T <~ 130 K. The colossal electroresistance, arising from a strongly nonlinear dependence of resistivity (ρ\rho) on current density (j), attains a large value (100\approx 100%) in the ferromagnetic insulating state. The severity of this nonlinear behavior of resistivity at high current densities is progressively enhanced with decreasing temperature, resulting ultimately, in a regime of negative differential resistivity (NDR, dρ\rho/dj < 0) for temperatures <~ 25 K. Concomitant with the build-up of the ER however, is a collapse of the MR to a small value (< 20%) even in magnetic field, H = 7 T. This demonstrates that the mechanisms that give rise to ER and MR are effectively decoupled in the ferromagnetic insulating phase of manganites. We establish that, the behavior of ferromagnetic insulating phase is distinct from the ferromagnetic metallic (FMM) phase as well as the charge ordered insulating (COI) phase, which are the two commonly realized ground state phases of manganites.Comment: 24 pages (RevTeX4 preprint), 8 figures, submitted to PR
    corecore