2,225 research outputs found
Full-Duplex Radio for Uplink/Downlink Transmission with Spatial Randomness
We consider a wireless system with a full-duplex (FD) access point (AP) that
transmits to a scheduled user in the downlink (DL) channel, while receiving
data from an user in the uplink (UL) channel at the same time on the same
frequency. In this system, loopback interference (LI) at the AP and inter user
interference between the uplink (UL) user and downlink (DL) user can cause
performance degradation. In order to characterize the effects of LI and inter
user interference, we derive closed-form expressions for the outage probability
and achievable sum rate of the system. In addition an asymptotic analysis that
reveals insights into the system behavior and performance degradation is
presented. Our results indicate that under certain conditions, FD transmissions
yield performance gains over half-duplex (HD) mode of operation.Comment: Accepted for the IEEE International Conference on Communications (ICC
2015
Wireless Information and Power Transfer in Full-Duplex Systems with Massive Antenna Arrays
We consider a multiuser wireless system with a full-duplex hybrid access
point (HAP) that transmits to a set of users in the downlink channel, while
receiving data from a set of energy-constrained sensors in the uplink channel.
We assume that the HAP is equipped with a massive antenna array, while all
users and sensor nodes have a single antenna. We adopt a time-switching
protocol where in the first phase, sensors are powered through wireless energy
transfer from HAP and HAP estimates the downlink channel of the users. In the
second phase, sensors use the harvested energy to transmit to the HAP. The
downlink-uplink sum-rate region is obtained by solving downlink sum-rate
maximization problem under a constraint on uplink sum-rate. Moreover, assuming
perfect and imperfect channel state information, we derive expressions for the
achievable uplink and downlink rates in the large-antenna limit and approximate
results that hold for any finite number of antennas. Based on these analytical
results, we obtain the power-scaling law and analyze the effect of the number
of antennas on the cancellation of intra-user interference and the
self-interference.Comment: Accepted for the IEEE International Conference on Communications (ICC
2017
Beamforming in Two-Way Fixed Gain Amplify-and-Forward Relay Systems with CCI
We analyze the outage performance of a two-way fixed gain amplify-and-forward
(AF) relay system with beamforming, arbitrary antenna correlation, and
co-channel interference (CCI). Assuming CCI at the relay, we derive the exact
individual user outage probability in closed-form. Additionally, while
neglecting CCI, we also investigate the system outage probability of the
considered network, which is declared if any of the two users is in
transmission outage. Our results indicate that in this system, the position of
the relay plays an important role in determining the user as well as the system
outage probability via such parameters as signal-to-noise imbalance, antenna
configuration, spatial correlation, and CCI power. To render further insights
into the effect of antenna correlation and CCI on the diversity and array
gains, an asymptotic expression which tightly converges to exact results is
also derived.Comment: Accepted for presentation on IEEE International Conference on
Communications (ICC 2012), Ottawa, Canada, June 201
Full-Duplex MIMO Relaying Powered by Wireless Energy Transfer
We consider a full-duplex decode-and-forward system, where the wirelessly
powered relay employs the time-switching protocol to receive power from the
source and then transmit information to the destination. It is assumed that the
relay node is equipped with two sets of antennas to enable full-duplex
communications. Three different interference mitigation schemes are studied,
namely, 1) optimal 2) zero-forcing and 3) maximum ratio combining/maximum ratio
transmission. We develop new outage probability expressions to investigate
delay-constrained transmission throughput of these schemes. Our analysis show
interesting performance comparisons of the considered precoding schemes for
different system and link parameters.Comment: Accepted for IEEE International Workshop on Signal Processing
Advances in Wireless Communications (SPAWC 2015), Invited pape
iTeleScope: Intelligent Video Telemetry and Classification in Real-Time using Software Defined Networking
Video continues to dominate network traffic, yet operators today have poor
visibility into the number, duration, and resolutions of the video streams
traversing their domain. Current approaches are inaccurate, expensive, or
unscalable, as they rely on statistical sampling, middle-box hardware, or
packet inspection software. We present {\em iTelescope}, the first intelligent,
inexpensive, and scalable SDN-based solution for identifying and classifying
video flows in real-time. Our solution is novel in combining dynamic flow rules
with telemetry and machine learning, and is built on commodity OpenFlow
switches and open-source software. We develop a fully functional system, train
it in the lab using multiple machine learning algorithms, and validate its
performance to show over 95\% accuracy in identifying and classifying video
streams from many providers including Youtube and Netflix. Lastly, we conduct
tests to demonstrate its scalability to tens of thousands of concurrent
streams, and deploy it live on a campus network serving several hundred real
users. Our system gives unprecedented fine-grained real-time visibility of
video streaming performance to operators of enterprise and carrier networks at
very low cost.Comment: 12 pages, 16 figure
Outage Probability of Dual-Hop Multiple Antenna AF Relaying Systems with Interference
This paper presents an analytical investigation on the outage performance of
dual-hop multiple antenna amplify-and-forward relaying systems in the presence
of interference. For both the fixed-gain and variable-gain relaying schemes,
exact analytical expressions for the outage probability of the systems are
derived. Moreover, simple outage probability approximations at the high signal
to noise ratio regime are provided, and the diversity order achieved by the
systems are characterized. Our results suggest that variable-gain relaying
systems always outperform the corresponding fixed-gain relaying systems. In
addition, the fixed-gain relaying schemes only achieve diversity order of one,
while the achievable diversity order of the variable-gain relaying scheme
depends on the location of the multiple antennas.Comment: Accepted to appear in IEEE Transactions on Communication
- …
